


'Resurrection' of ancient biological molecules, AI solves antibiotic resistance, two papers published by Fudan University and Penn University collaborative teams were published in Cell and Nature sub-journals
編輯| 蘿蔔皮
抗生素抗藥性感染每年在全球造成約127 萬人死亡,預計到2050 年,如果沒有特效的新藥,每年死亡人數將達到1000 萬人,因此需要採取緊急措施來應對抗生素抗藥性。
賓州大學的校長助理教授(Presidential Assistant Professor) Cesar de la Fuente 說:「即使感覺身體好些了,也要確保完成抗生素療程,這是許多人聽過,但經常忽視的醫學口頭禪。 「近幾十年來,這導致了抗藥性細菌的增加,全球健康危機日益嚴重,每年造成約495 萬人死亡,甚至可能使普通感染也致命。」
##De la Fuente 和復旦大學、賓州大學的研究人員組成的跨領域研究團隊,一直致力於研究應對抗生素抗藥性問題。 在最新的研究中,他們開發了一種人工智慧工具來挖掘龐大且基本上未開發的生物數據——超過1000萬個現代和已滅絕生物的分子——以發現新的抗生素候選藥物。 研究以「Deep-learning-enabled antibiotic discovery through molecular de-extinction
」為題,於2024 年6 月11 日發佈於《Nature Biomedical Engineering》。
論文連結:https://www.nature.com/articles/s41551-024-01201-x
「分子復活」技術
De la Fuente 團隊開發了所謂的「分子復活」技術,即復活已經滅絕的具有潛在治療作用的古代分子,並因此在古代生物的基因組中發現了治療分子。他們推測,他們發現的許多分子可能在整個進化過程中為宿主的免疫發揮作用。 研究以「Discovery of antimicrobial peptides in the global microbiome with machine learning」為題,於 2024 年 6 月 5 日發佈在《Cell
》。論文連結:https://doi.org/10.1016/j.cell.2024.05.013
#研究者在《Cell
A total of 79 peptides were active, 63 of which targeted pathogens. These active AMPs exhibit antimicrobial activity by disrupting bacterial membranes. In total, this approach identified nearly one million prokaryotic AMP sequences, an open source for antibiotic discovery.
antibiotic peptide de-extinction
In the study in "Nature Biomedical Engineering, researchers show that deep learning can be used to mine the proteomes of all available extinct organisms to discover antibiotic peptides.
De la Fuente’s team trained a combination of deep learning models consisting of peptide sequence encoders and neural networks, called Antibiotic Peptide De-Extinction (APEX), to predict antimicrobial activity and used it to mine 10,311,899 peptides .
Marcelo Der Torossian Torres, a postdoctoral researcher in De la Fuente's lab, said that when the team built APEX, they first created a "highly standardized data set to train it, which was missing in the literature... This is surprising because there are so many data sets and researchers will use multiple data sets, assuming that all samples are collected in a very systematic and consistent way, which is not always the case."
APEX did also utilize "probably the largest data set of its kind" as a control for the experiment, he said. This allows researchers to determine how their models perform relative to existing knowledge and validate the uniqueness and validity of antibiotic sequences discovered by APEX.
"Only with high-quality data sets can artificial intelligence succeed in a complex and messy field like biology." De la Fuente said, "We realized this many years ago and have been working hard. Create a data set that can be used to train our algorithm."
APEX uses a combination of recurrent neural networks and attention networks to perform two key tasks, namely identifying encryption," said Fangping Wan, a postdoctoral researcher in De la Fuente's lab. Peptides, fragments within proteins that have antimicrobial properties.
"Recurrent neural networks are very good at processing sequences, such as proteins, because they can process input independent and ordered data." Wan said, "And attention networks can improve the network's localization of proteins that may be related to antibacterial activity. The models predicted 37,176 sequences with broad-spectrum antibacterial activity, 11,035 of which were not found in extant organisms.
Synthesis and Application ValidationThey also synthesized 69 peptides and experimentally confirmed their activity against bacterial pathogens. Most peptides kill bacteria by depolarizing their cytoplasmic membrane, in contrast to known antimicrobial peptides, which tend to target the outer membrane.
It is worth noting that some of the lead compounds (including mammothin-2 from mammoths, pixel-2 from straight-tusked elephants, hydrogenated damin-1 from ancient manatees, from giant trees Lazy carnosine-2 and macrocerocin-1 from the extinct giant elk) showed anti-infectious activity in mice with skin abscesses or thigh infections.
This is a crucial step as it brings these drug candidates closer to potential clinical trials and eventual therapeutic use.
In addition, most of the ancient peptides have a novel mechanism of action by depolarizing bacterial cell membranes, a unique targeting approach that suggests a new paradigm for infectious disease control.
Taken together, the computational work performed by De la Fuente’s lab over the past five years has significantly accelerated the ability to discover new antibiotics. What used to take years of hard work using traditional methods can now be done in just a few hours using AI.
Related reports:
https://phys.org/news/2024-06-ai-antibiotic-resistance.htmlThe above is the detailed content of 'Resurrection' of ancient biological molecules, AI solves antibiotic resistance, two papers published by Fudan University and Penn University collaborative teams were published in Cell and Nature sub-journals. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

In modern manufacturing, accurate defect detection is not only the key to ensuring product quality, but also the core of improving production efficiency. However, existing defect detection datasets often lack the accuracy and semantic richness required for practical applications, resulting in models unable to identify specific defect categories or locations. In order to solve this problem, a top research team composed of Hong Kong University of Science and Technology Guangzhou and Simou Technology innovatively developed the "DefectSpectrum" data set, which provides detailed and semantically rich large-scale annotation of industrial defects. As shown in Table 1, compared with other industrial data sets, the "DefectSpectrum" data set provides the most defect annotations (5438 defect samples) and the most detailed defect classification (125 defect categories

The open LLM community is an era when a hundred flowers bloom and compete. You can see Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 and many other excellent performers. Model. However, compared with proprietary large models represented by GPT-4-Turbo, open models still have significant gaps in many fields. In addition to general models, some open models that specialize in key areas have been developed, such as DeepSeek-Coder-V2 for programming and mathematics, and InternVL for visual-language tasks.

For AI, Mathematical Olympiad is no longer a problem. On Thursday, Google DeepMind's artificial intelligence completed a feat: using AI to solve the real question of this year's International Mathematical Olympiad IMO, and it was just one step away from winning the gold medal. The IMO competition that just ended last week had six questions involving algebra, combinatorics, geometry and number theory. The hybrid AI system proposed by Google got four questions right and scored 28 points, reaching the silver medal level. Earlier this month, UCLA tenured professor Terence Tao had just promoted the AI Mathematical Olympiad (AIMO Progress Award) with a million-dollar prize. Unexpectedly, the level of AI problem solving had improved to this level before July. Do the questions simultaneously on IMO. The most difficult thing to do correctly is IMO, which has the longest history, the largest scale, and the most negative

Editor |KX To this day, the structural detail and precision determined by crystallography, from simple metals to large membrane proteins, are unmatched by any other method. However, the biggest challenge, the so-called phase problem, remains retrieving phase information from experimentally determined amplitudes. Researchers at the University of Copenhagen in Denmark have developed a deep learning method called PhAI to solve crystal phase problems. A deep learning neural network trained using millions of artificial crystal structures and their corresponding synthetic diffraction data can generate accurate electron density maps. The study shows that this deep learning-based ab initio structural solution method can solve the phase problem at a resolution of only 2 Angstroms, which is equivalent to only 10% to 20% of the data available at atomic resolution, while traditional ab initio Calculation

Editor | ScienceAI Based on limited clinical data, hundreds of medical algorithms have been approved. Scientists are debating who should test the tools and how best to do so. Devin Singh witnessed a pediatric patient in the emergency room suffer cardiac arrest while waiting for treatment for a long time, which prompted him to explore the application of AI to shorten wait times. Using triage data from SickKids emergency rooms, Singh and colleagues built a series of AI models that provide potential diagnoses and recommend tests. One study showed that these models can speed up doctor visits by 22.3%, speeding up the processing of results by nearly 3 hours per patient requiring a medical test. However, the success of artificial intelligence algorithms in research only verifies this

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

In 2023, almost every field of AI is evolving at an unprecedented speed. At the same time, AI is constantly pushing the technological boundaries of key tracks such as embodied intelligence and autonomous driving. Under the multi-modal trend, will the situation of Transformer as the mainstream architecture of AI large models be shaken? Why has exploring large models based on MoE (Mixed of Experts) architecture become a new trend in the industry? Can Large Vision Models (LVM) become a new breakthrough in general vision? ...From the 2023 PRO member newsletter of this site released in the past six months, we have selected 10 special interpretations that provide in-depth analysis of technological trends and industrial changes in the above fields to help you achieve your goals in the new year. be prepared. This interpretation comes from Week50 2023
