


Too complete! Apple launches new visual model 4M-21, capable of 21 modes
Current multimodal and multitasking base models, such as **4M** or **UnifiedIO**, show promising results. However, their out-of-the-box ability to accept different inputs and perform different tasks is limited by the (usually small) number of modalities and tasks they are trained on.
, Based on this, researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) and Apple jointly developed an **advanced** any-to-any modality single model that is **widely** diverse in dozens of Conduct training on various modalities, and perform collaborative training on large-scale multi-modal data sets and text corpora.
A key step in the training process is to perform discrete **tokenization** on various modalities, whether they are structured data such as image-like neural network **feature maps**, vectors, instance segmentation or human poses, or Data that can be represented as text.
Paper address: https://arxiv.org/pdf/2406.09406
Paper homepage https://4m.epfl.ch/
Paper title: 4M-21: An Any -to-Any Vision Model for Tens of Tasks and Modalities
This study shows that training a single model can also complete at least **three times** as many tasks/**modalities** as existing models, and does not Performance will be lost. In addition, this research also achieves finer-grained and more controllable multi-mode data generation capabilities.
This research builds on the multi-modal mask pre-training scheme and improves model capabilities by training on dozens of highly diverse modalities. By encoding it using modality-specific discrete tokenizers, the study enables training a single unified model on different modalities.
Simply put, this research extends the capabilities of existing models in several key dimensions:
Modalities: from 7 modalities of the best existing any-to-any model to 21 different modalities , enabling cross-modal retrieval, controllable generation, and powerful out-of-the-box performance. This is the first time a single vision model can solve dozens of different tasks in an any-to-any manner without compromising performance and without any traditional multi-task learning.
Diversity: Add support for more structured data, such as human poses, SAM instances, metadata, and more.
tokenization: Study discrete tokenization of different modalities using modality-specific methods, such as global image embeddings, human poses, and semantic instances.
Extension: Expand model size to 3B parameters and dataset to 0.5B samples.
Collaborative training: collaborative training in vision and language at the same time.
Method Introduction
This study uses the 4M pre-training scheme (the study also came from EPFL and Apple and was released last year), which is proven to be a general method that can be effectively extended to multi-modality.
Specifically, this article keeps the architecture and multi-modal mask training goals unchanged, by expanding the size of the model and data sets, increasing the type and number of modalities involved in training the model, and jointly on multiple data sets Training can improve the performance and adaptability of the model.
Modalities are divided into the following categories: RGB, geometry, semantics, edge, feature map, metadata and text, as shown in the figure below.
Tokenization
Tokenization mainly includes converting different modalities and tasks into sequences or discrete tokens, thereby unifying their representation spaces. Researchers use different tokenization methods to discretize modes with different characteristics, as shown in Figure 3. In summary, this article uses three tokenizers, including ViT tokenizer, MLP tokenizer and text tokenizer.
In terms of architecture selection, this article adopts the 4M encoder-decoder architecture based on Transformer, and adds additional modal embeddings to adapt to new modalities.
Experimental results
Next, the paper demonstrates the multi-modal capabilities of 4M-21.
Multi-modal generation
Based on iterative decoding token, 4M-21 can be used to predict any training modality. As shown in Figure 2, this paper can generate all modalities in a consistent manner from a given input modality.
Furthermore, since this study can conditionally and unconditionally generate any training modality from any subset of other modalities, it supports several methods to perform fine-grained and multi-modal generation, as shown in Figure 4, For example, perform multimodal editing. Furthermore, 4M-21 demonstrates improved text understanding, both on T5-XXL embeddings and regular subtitles, enabling geometrically and semantically sound generation (Figure 4, top right).
Multi-modal retrieval
As shown in Figure 5, 4M-21 unlocks retrieval capabilities that are not possible with the original DINOv2 and ImageBind models, such as retrieving RGB images or other modalities by using other modalities as queries . In addition, 4M-21 can combine multiple modalities to predict global embeddings for better control of retrieval, as shown in the image on the right.
Out of the box
The 4M-21 is capable of performing a range of common vision tasks out of the box, as shown in Figure 6.
Table 1 evaluates DIODE surface normal and depth estimation, COCO semantic and instance segmentation, 3DPW 3D human pose estimation, etc.
Transfer experiment
In addition, this article also trained models of three different sizes: B, L and XL. Their encoder is then transferred to downstream tasks and evaluated on single-modality (RGB) and multi-modality (RGB + depth) settings. All transfer experiments discard the decoder and instead train a task-specific head. The results are shown in Table 2:
Finally, this paper performs multi-modal transfer on NYUv2, Hypersim semantic segmentation and 3D object detection on ARKitScenes. As shown in Table 3, 4M-21 takes full advantage of the optional depth input and significantly improves the baseline.
The above is the detailed content of Too complete! Apple launches new visual model 4M-21, capable of 21 modes. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

It is also a Tusheng video, but PaintsUndo has taken a different route. ControlNet author LvminZhang started to live again! This time I aim at the field of painting. The new project PaintsUndo has received 1.4kstar (still rising crazily) not long after it was launched. Project address: https://github.com/lllyasviel/Paints-UNDO Through this project, the user inputs a static image, and PaintsUndo can automatically help you generate a video of the entire painting process, from line draft to finished product. follow. During the drawing process, the line changes are amazing. The final video result is very similar to the original image: Let’s take a look at a complete drawing.

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com The authors of this paper are all from the team of teacher Zhang Lingming at the University of Illinois at Urbana-Champaign (UIUC), including: Steven Code repair; Deng Yinlin, fourth-year doctoral student, researcher

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com In the development process of artificial intelligence, the control and guidance of large language models (LLM) has always been one of the core challenges, aiming to ensure that these models are both powerful and safe serve human society. Early efforts focused on reinforcement learning methods through human feedback (RL

If the answer given by the AI model is incomprehensible at all, would you dare to use it? As machine learning systems are used in more important areas, it becomes increasingly important to demonstrate why we can trust their output, and when not to trust them. One possible way to gain trust in the output of a complex system is to require the system to produce an interpretation of its output that is readable to a human or another trusted system, that is, fully understandable to the point that any possible errors can be found. For example, to build trust in the judicial system, we require courts to provide clear and readable written opinions that explain and support their decisions. For large language models, we can also adopt a similar approach. However, when taking this approach, ensure that the language model generates

Recently, the Riemann Hypothesis, known as one of the seven major problems of the millennium, has achieved a new breakthrough. The Riemann Hypothesis is a very important unsolved problem in mathematics, related to the precise properties of the distribution of prime numbers (primes are those numbers that are only divisible by 1 and themselves, and they play a fundamental role in number theory). In today's mathematical literature, there are more than a thousand mathematical propositions based on the establishment of the Riemann Hypothesis (or its generalized form). In other words, once the Riemann Hypothesis and its generalized form are proven, these more than a thousand propositions will be established as theorems, which will have a profound impact on the field of mathematics; and if the Riemann Hypothesis is proven wrong, then among these propositions part of it will also lose its effectiveness. New breakthrough comes from MIT mathematics professor Larry Guth and Oxford University

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Introduction In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the basic model for many downstream tasks, current MLLM consists of the well-known Transformer network, which

cheers! What is it like when a paper discussion is down to words? Recently, students at Stanford University created alphaXiv, an open discussion forum for arXiv papers that allows questions and comments to be posted directly on any arXiv paper. Website link: https://alphaxiv.org/ In fact, there is no need to visit this website specifically. Just change arXiv in any URL to alphaXiv to directly open the corresponding paper on the alphaXiv forum: you can accurately locate the paragraphs in the paper, Sentence: In the discussion area on the right, users can post questions to ask the author about the ideas and details of the paper. For example, they can also comment on the content of the paper, such as: "Given to

Show the causal chain to LLM and it learns the axioms. AI is already helping mathematicians and scientists conduct research. For example, the famous mathematician Terence Tao has repeatedly shared his research and exploration experience with the help of AI tools such as GPT. For AI to compete in these fields, strong and reliable causal reasoning capabilities are essential. The research to be introduced in this article found that a Transformer model trained on the demonstration of the causal transitivity axiom on small graphs can generalize to the transitive axiom on large graphs. In other words, if the Transformer learns to perform simple causal reasoning, it may be used for more complex causal reasoning. The axiomatic training framework proposed by the team is a new paradigm for learning causal reasoning based on passive data, with only demonstrations
