Home Technology peripherals AI ICML 2024 | Signal representation is exponentially stronger, memory saving exceeds 35%, quantum implicit representation network is coming

ICML 2024 | Signal representation is exponentially stronger, memory saving exceeds 35%, quantum implicit representation network is coming

Jun 26, 2024 pm 05:07 PM
project Quantum Implicit Representation Network QIREN

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了
The AIxiv column is a column where academic and technical content is published on this site. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

The authors of this article are Professor Zhang Peng of the Department of Intelligence and Computing of Tianjin University, his master's student Zhao Jiaming, and doctoral students Qiao Wenbo and Gao Jue. This research work was funded by the National Natural Science Foundation of China and Tianjin University-China Science and Technology Wenge Joint Laboratory.

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

  • Paper title: Quantum Implicit Neural Representations
  • Paper authors: Jiaming Zhao, Wenbo Qiao, Peng Zhang*, Hui Gao
  • Paper link: https://arxiv.org/abs /2406.03873

Introduction

The Tianjin University Quantum Intelligence and Language Understanding team innovatively introduced quantum computing into the field of implicit neural representation and proposed the quantum implicit representation network (Q uantum Implicit Representation Network, QIREN). Compared with the classic neural network method, this method has exponentially stronger signal representation capabilities in theory. Experimental results also confirm that QIREN indeed exhibits excellent performance beyond the SOTA model on signal representation tasks, with fitting errors reduced by up to 35% with fewer parameters. Figure 1 shows the core idea and main conclusions of this paper. Relevant papers have been accepted by ICML 2024, one of the most authoritative conferences in the field of machine learning. ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了
                                                                                                                                                                                                                                       Figure 1. Classical Fourier neural network and quantum Fourier neural network.

In recent years, implicit neural representation has attracted widespread attention as an emerging signal representation method. Implicit neural representations have a number of unique advantages over traditional discrete grid representations, such as images represented by a grid of pixels. First, it has the capability of "infinite resolution" and can sample at any spatial resolution. Secondly, implicit neural representation has excellent storage space saving and provides convenience for data storage. Because of these unique advantages, implicit neural representation has quickly become a mainstream paradigm for representing signals such as images, objects, and 3D scenes. Most early research on implicit neural representations was built on ReLU-based multilayer perceptrons (MLPs). However, it is difficult for ReLU-based MLP to accurately model the high-frequency part of the signal, as shown in Figure 2. Recent research has begun to explore the use of Fourier neural networks (FNN) to overcome this limitation. However, in the face of increasingly complex fitting tasks in real-world applications, classical Fourier neural networks also require more and more training parameters, which increases the demand for computing resources. The quantum implicit neural representation proposed in this article takes advantage of quantum advantages to reduce parameters and computational consumption. This solution can bring new inspiration to the field of implicit neural representation and even machine learning.像 Figure 2. Different frequency components of the different frequency components (top) and RELU -based MLP -based images (bottom)

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Model

                                                                                                                                                                        Figure 3. Model architecture

The overall architecture of QIREN is shown in Figure 3. Consists of N mixed layers and linear layers at the end. The model takes coordinates as input and outputs signal values. The data initially enters the mixed layer, starting with the Linear layer and the BatchNorm layer, resulting in:

and is then fed into the data re-upload quantum circuit QC. In Figure 2 (b) and (c), we give the specific implementation of the parameter layer and coding layer quantum circuits. The parameter layer consists of K stacked blocks. Each block contains a spin gate applied to each qubit, as well as CNOT gates connected in a round-robin fashion. The coding layer applies gates on each qubit. Finally, we measure the expected value of a quantum state relative to an observable. The output of a quantum circuit is given by:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

where O represents any observable. The output of the nth blending layer will be used as the input of the (n+1)th layer. Finally, we add a linear layer to receive and output. We use mean square error (MSE) as the loss function to train the model:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Model theoretical analysis

In some previous studies, the mathematical properties of the data re-upload quantum circuit have been revealed. In essence, the data re-upload quantum circuit is to fit the objective function in the form of a Fourier series. However, previous work only explored multi-layer single-qubit circuits or single-layer multi-qubit circuits, and did not compare with classical methods and did not find the advantages of data re-uploading quantum circuits. We extend our research to multi-layer multi-qubit circuits. In addition, we have proven that in the field of implicit neural representation, the hybrid quantum neural network QIREN, which uses data reuploading quantum circuits as its core component, has exponential advantages over classical methods. We analyzed the role of the quantum layer and the classical layer in QIREN and summarized it into the following three points:

1. Under optimal conditions, the ability of data re-uploading quantum circuits to represent Fourier series increases with the circuit's The size grows exponentially.

See sections 4.2 and 4.3 of the paper for specific derivation.

2. The function of the linear layer is to further expand the spectrum and adjust the frequency, thereby improving the fitting performance.

Applying a linear layer before uploading data to a quantum circuit is equivalent to adjusting the eigenvalues ​​of the coding layer Hamiltonian, ultimately affecting the spectrum. This approach has two advantages. First, it can make the spectrum larger. Some redundant terms are produced in the spectrum when encoding only with gates. This redundancy can be reduced by using linear layers. Second, it enables the coverage of the spectrum to be adjusted, aiming to cover frequencies with larger coefficients that are more important. Therefore, adding a linear layer can further improve the fitting performance of QIREN.

3. The role of the Batchnorm layer is to accelerate the convergence of the quantum model.

In feedforward neural networks, data usually passes through the BatchNorm layer before the activation function, which effectively prevents the vanishing gradient problem. Similarly, in QIREN, quantum circuits replace the activation function and play a role in providing nonlinearity (the quantum circuit itself is linear, but the process of uploading classical data to the quantum circuit is nonlinear). Therefore, we added a BatchNorm layer here with the purpose of stabilizing and accelerating the convergence of the model.

Experimental results

We verified QIREN’s superior performance in representing signals, especially high-frequency signals, through image representation and sound representation tasks. The experimental results are shown in Table 1. QIREN and SIREN showed similar performance on the sound representation task. Although the performance of the two models seems to be comparable, it is worth emphasizing that our model achieves 35.1% memory savings with the fewest parameters, and the convergence of SIREN requires setting appropriate hyperparameters, while our model does not This kind of restriction. We then analyzed the model output from a frequency perspective. We visualize the spectrum of the model output in Figure 4 . It is obvious that the low-frequency distributions output by the model are close to the real situation. However, when it comes to high-frequency distributions, both QIREN and SIREN fit well, followed by ReLU-based MLP with random Fourier features (RFF). ReLU-based and Tanh-based MLPs even lack the high-frequency part of the signal.

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Table 1. MSE() of the model on signal representation and image super-resolution tasks. Models considered SOTA are marked *. params represents the amount of model parameters, and mem represents the memory saved by the model compared with discrete grid representation.任 Figure 4. Sound indicating the spectrum of the model output in the task. Qiren achieves the best performance in the image representation task. Compared with the SOTA model, the error is The maximum reduction was 34.8%. To further explore the signal representation capabilities of the model, we use filters to separate the high-frequency and low-frequency components of its output and compare the fitting errors of these two components respectively, with the results shown in Figure 5. QIREN consistently achieves the lowest errors when fitting high- and low-frequency components.

                                                                                                                                                                                                                                                             Figure 5. Relative error of each model compared to Tanh-based MLP. Shaded areas represent low-frequency errors, while unshaded areas represent high-frequency errors.

Latest research introduces a breakthrough framework to extend implicit neural representations to image generation. More specifically, the framework utilizes a hypernetwork taking random distributions as input to generate parameters that implicitly characterize the network. Subsequently, these generated parameters are assigned to the implicit representation network. Finally, the implicit representation network generates images taking coordinates as input. An adversarial approach is employed to ensure that the generated images are consistent with our desired results. In this task, we adopt such a framework and build on StyleGAN2.

The experimental results are shown in Table 2. We also further explore some exciting features of the QIREN generator, as shown in Figures 6 and 7. F Table 2. FID score of the model on FFHQ and CELEBA-HQ datasets.

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                                                                                                                                                                                                                                                                                                                                                                                 Figure 7. Meaningful image space interpolation

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

summary

This work not only integrates quantum advantages into implicit neural representation, but also opens up a promising application direction for quantum neural networks - implicit neural representation. It is worth emphasizing that implicit neural representations have many other potential applications, such as representing scenes or 3D objects, time series prediction, and solving differential equations. For a large class of tasks that model continuous signals, we can consider introducing implicit representation networks as a basic component. Based on the theoretical and experimental foundations of this paper, we can extend QIREN to these applications in future work, and QIREN is expected to produce better results with fewer parameters in these fields. At the same time, we found a suitable application scenario for quantum machine learning. Thereby promoting further practical and innovative research within the quantum machine learning community. ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

The above is the detailed content of ICML 2024 | Signal representation is exponentially stronger, memory saving exceeds 35%, quantum implicit representation network is coming. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1262
29
C# Tutorial
1235
24
The author of ControlNet has another hit! The whole process of generating a painting from a picture, earning 1.4k stars in two days The author of ControlNet has another hit! The whole process of generating a painting from a picture, earning 1.4k stars in two days Jul 17, 2024 am 01:56 AM

It is also a Tusheng video, but PaintsUndo has taken a different route. ControlNet author LvminZhang started to live again! This time I aim at the field of painting. The new project PaintsUndo has received 1.4kstar (still rising crazily) not long after it was launched. Project address: https://github.com/lllyasviel/Paints-UNDO Through this project, the user inputs a static image, and PaintsUndo can automatically help you generate a video of the entire painting process, from line draft to finished product. follow. During the drawing process, the line changes are amazing. The final video result is very similar to the original image: Let’s take a look at a complete drawing.

Topping the list of open source AI software engineers, UIUC's agent-less solution easily solves SWE-bench real programming problems Topping the list of open source AI software engineers, UIUC's agent-less solution easily solves SWE-bench real programming problems Jul 17, 2024 pm 10:02 PM

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com The authors of this paper are all from the team of teacher Zhang Lingming at the University of Illinois at Urbana-Champaign (UIUC), including: Steven Code repair; Deng Yinlin, fourth-year doctoral student, researcher

From RLHF to DPO to TDPO, large model alignment algorithms are already 'token-level' From RLHF to DPO to TDPO, large model alignment algorithms are already 'token-level' Jun 24, 2024 pm 03:04 PM

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com In the development process of artificial intelligence, the control and guidance of large language models (LLM) has always been one of the core challenges, aiming to ensure that these models are both powerful and safe serve human society. Early efforts focused on reinforcement learning methods through human feedback (RL

arXiv papers can be posted as 'barrage', Stanford alphaXiv discussion platform is online, LeCun likes it arXiv papers can be posted as 'barrage', Stanford alphaXiv discussion platform is online, LeCun likes it Aug 01, 2024 pm 05:18 PM

cheers! What is it like when a paper discussion is down to words? Recently, students at Stanford University created alphaXiv, an open discussion forum for arXiv papers that allows questions and comments to be posted directly on any arXiv paper. Website link: https://alphaxiv.org/ In fact, there is no need to visit this website specifically. Just change arXiv in any URL to alphaXiv to directly open the corresponding paper on the alphaXiv forum: you can accurately locate the paragraphs in the paper, Sentence: In the discussion area on the right, users can post questions to ask the author about the ideas and details of the paper. For example, they can also comment on the content of the paper, such as: "Given to

Posthumous work of the OpenAI Super Alignment Team: Two large models play a game, and the output becomes more understandable Posthumous work of the OpenAI Super Alignment Team: Two large models play a game, and the output becomes more understandable Jul 19, 2024 am 01:29 AM

If the answer given by the AI ​​model is incomprehensible at all, would you dare to use it? As machine learning systems are used in more important areas, it becomes increasingly important to demonstrate why we can trust their output, and when not to trust them. One possible way to gain trust in the output of a complex system is to require the system to produce an interpretation of its output that is readable to a human or another trusted system, that is, fully understandable to the point that any possible errors can be found. For example, to build trust in the judicial system, we require courts to provide clear and readable written opinions that explain and support their decisions. For large language models, we can also adopt a similar approach. However, when taking this approach, ensure that the language model generates

A significant breakthrough in the Riemann Hypothesis! Tao Zhexuan strongly recommends new papers from MIT and Oxford, and the 37-year-old Fields Medal winner participated A significant breakthrough in the Riemann Hypothesis! Tao Zhexuan strongly recommends new papers from MIT and Oxford, and the 37-year-old Fields Medal winner participated Aug 05, 2024 pm 03:32 PM

Recently, the Riemann Hypothesis, known as one of the seven major problems of the millennium, has achieved a new breakthrough. The Riemann Hypothesis is a very important unsolved problem in mathematics, related to the precise properties of the distribution of prime numbers (primes are those numbers that are only divisible by 1 and themselves, and they play a fundamental role in number theory). In today's mathematical literature, there are more than a thousand mathematical propositions based on the establishment of the Riemann Hypothesis (or its generalized form). In other words, once the Riemann Hypothesis and its generalized form are proven, these more than a thousand propositions will be established as theorems, which will have a profound impact on the field of mathematics; and if the Riemann Hypothesis is proven wrong, then among these propositions part of it will also lose its effectiveness. New breakthrough comes from MIT mathematics professor Larry Guth and Oxford University

The first Mamba-based MLLM is here! Model weights, training code, etc. have all been open source The first Mamba-based MLLM is here! Model weights, training code, etc. have all been open source Jul 17, 2024 am 02:46 AM

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Introduction In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the basic model for many downstream tasks, current MLLM consists of the well-known Transformer network, which

LLM is really not good for time series prediction. It doesn't even use its reasoning ability. LLM is really not good for time series prediction. It doesn't even use its reasoning ability. Jul 15, 2024 pm 03:59 PM

Can language models really be used for time series prediction? According to Betteridge's Law of Headlines (any news headline ending with a question mark can be answered with "no"), the answer should be no. The fact seems to be true: such a powerful LLM cannot handle time series data well. Time series, that is, time series, as the name suggests, refers to a set of data point sequences arranged in the order of time. Time series analysis is critical in many areas, including disease spread prediction, retail analytics, healthcare, and finance. In the field of time series analysis, many researchers have recently been studying how to use large language models (LLM) to classify, predict, and detect anomalies in time series. These papers assume that language models that are good at handling sequential dependencies in text can also generalize to time series.

See all articles