The Queue Data Structure
Queue
Often taught along with stacks, queues are also, abstract data types that are defined in term of the operations we perform in them. The big difference between stacks and queues is, the order of operations they enforce, queues are FIRST IN FIRST OUT, or FIFO, that means that, the first thing that gets inside a queue is the first to go out, while stacks are LAST IN FIRST OUT, so the last we put is the first we will get back
Queues are defined in term of three operations:
- enqueue (put an element at the end of the queue)
- dequeue (take an element of the front of the queue)
- peek (get the first element while not removing it from the queue)
We can think of queues as lines in a restaurant, when we get into a line, we have to wait everyone on our front to be served before it's our time.
Implementation
Here is a simple implementation of a queue using an array:
#include <stdlib.h> #include <stdio.h> #include <stdint.h> #define QUEUE_LEN 1024 struct queue_t { uint32_t data[QUEUE_LEN]; size_t ptr; }; void enqueue(struct queue_t *queue, uint32_t value) { if (queue->ptr + 1 >= QUEUE_LEN) { fprintf(stderr, "The queue is full"); exit(1); } queue->data[queue->ptr++] = value; } uint32_t dequeue(struct queue_t *queue) { if (queue->ptr == 0) { fprintf(stderr, "Cannot dequeue empty queue"); exit(1); } uint32_t val = queue->data[0]; for (size_t i = 1; i < queue->ptr; ++i) { queue->data[i - 1] = queue->data[i]; } queue->ptr--; return val; } uint32_t peek(struct queue_t *queue) { if (queue->ptr == 0) { fprintf(stderr, "Cannot peek empty queue"); exit(1); } return queue->data[0]; }
There is an interesting implementation detail here, whenever we dequeue, since we are removing an element from the front of the queue,
we must move all the following elements back, so in this implementation, the queue has a complexity of O(n), to avoid that, we would need to have a LinkedList as the underlying data structure, by doing it, we could just move the head pointer to the next, instead of having to do all of this.
The best implementation
#include <stdlib.h> #include <stdio.h> #include <stdint.h> struct node_t { uint32_t data; struct node_t *next; }; struct linked_list_t { struct node_t *head; struct node_t *tail; size_t len; }; void enqueue(struct linked_list_t *list, uint32_t data) { struct node_t *node = malloc(sizeof(struct node_t)); node->data = data; node->next = NULL; list->len++; if (list->len == 1) { list->head = list->tail = node; return; } list->tail->next = node; list->tail = node; } uint32_t dequeue(struct linked_list_t *list) { if (list->len == 0) { fprintf(stderr, "Cannot dequeue empty list"); exit(1); } struct node_t *aux = list->head; uint32_t data = aux->data; list->head = list->head->next; list->len--; free(aux); return data; } uint32_t peek(struct linked_list_t *list) { if (list->len == 0) { fprintf(stderr, "Cannot peek empty list"); exit(1); } return list->head->data; } void list_free(struct linked_list_t *list) { struct node_t *prev = NULL; struct node_t *aux = list->head; while (aux != NULL) { prev = aux; aux = aux->next; if (prev) { free(prev); } } }
Here you can see that there is no iteration when enqueuing nor dequeueing, we are just adjusting pointers, so that's why this implementation has a better time complexity when dequeueing.
There is a small caveat though, thanks to cache locality even though this implementation is faster in the worst case, it probably is not in most of them.
The above is the detailed content of The Queue Data Structure. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

The future development trends of C and XML are: 1) C will introduce new features such as modules, concepts and coroutines through the C 20 and C 23 standards to improve programming efficiency and security; 2) XML will continue to occupy an important position in data exchange and configuration files, but will face the challenges of JSON and YAML, and will develop in a more concise and easy-to-parse direction, such as the improvements of XMLSchema1.1 and XPath3.1.

C Reasons for continuous use include its high performance, wide application and evolving characteristics. 1) High-efficiency performance: C performs excellently in system programming and high-performance computing by directly manipulating memory and hardware. 2) Widely used: shine in the fields of game development, embedded systems, etc. 3) Continuous evolution: Since its release in 1983, C has continued to add new features to maintain its competitiveness.

There are significant differences in the learning curves of C# and C and developer experience. 1) The learning curve of C# is relatively flat and is suitable for rapid development and enterprise-level applications. 2) The learning curve of C is steep and is suitable for high-performance and low-level control scenarios.

C interacts with XML through third-party libraries (such as TinyXML, Pugixml, Xerces-C). 1) Use the library to parse XML files and convert them into C-processable data structures. 2) When generating XML, convert the C data structure to XML format. 3) In practical applications, XML is often used for configuration files and data exchange to improve development efficiency.

C Learners and developers can get resources and support from StackOverflow, Reddit's r/cpp community, Coursera and edX courses, open source projects on GitHub, professional consulting services, and CppCon. 1. StackOverflow provides answers to technical questions; 2. Reddit's r/cpp community shares the latest news; 3. Coursera and edX provide formal C courses; 4. Open source projects on GitHub such as LLVM and Boost improve skills; 5. Professional consulting services such as JetBrains and Perforce provide technical support; 6. CppCon and other conferences help careers

The modern C design model uses new features of C 11 and beyond to help build more flexible and efficient software. 1) Use lambda expressions and std::function to simplify observer pattern. 2) Optimize performance through mobile semantics and perfect forwarding. 3) Intelligent pointers ensure type safety and resource management.

C still has important relevance in modern programming. 1) High performance and direct hardware operation capabilities make it the first choice in the fields of game development, embedded systems and high-performance computing. 2) Rich programming paradigms and modern features such as smart pointers and template programming enhance its flexibility and efficiency. Although the learning curve is steep, its powerful capabilities make it still important in today's programming ecosystem.
