


Integrated Traffic Management System with Predictive Modeling and Visualization
Overview
The Traffic Management System (TMS) presented here integrates predictive modeling and real-time visualization to facilitate efficient traffic control and incident management. Developed using Python and Tkinter for the graphical interface, this system leverages machine learning algorithms to forecast traffic volume based on weather conditions and rush hour dynamics. The application visualizes historical and predicted traffic data through interactive graphs, providing insights crucial for decision-making in urban traffic management.
Key Features
- Traffic Prediction: Utilizes machine learning models (Linear Regression and Random Forest) to predict traffic volume based on temperature, precipitation, and rush hour indicators.
- Graphical Visualization: Displays historical traffic trends alongside predicted volumes on interactive graphs, enhancing understanding and monitoring capabilities.
- Real-time Traffic Simulation: Simulates traffic light changes to replicate real-world scenarios, aiding in assessing system responses under various conditions.
- Incident Reporting: Allows users to report incidents, capturing location and description for prompt management and response.
Getting Started
Prerequisites
Ensure Python 3.x is installed. Install dependencies using pip:
pip install pandas matplotlib scikit-learn
Installation
- Clone the repository:
git clone <https://github.com/EkeminiThompson/traffic_management_system.git> cd traffic-management-system
- Install dependencies:
pip install -r requirements.txt
- Run the application:
python main.py
Usage
-
Traffic Prediction:
- Select a location, date, and model (Linear Regression or Random Forest).
- Click "Predict Traffic" to see the predicted traffic volume.
- Clear the graph using "Clear Graph" button.
-
Graphical Visualization:
- The graph shows historical traffic data and predicted volumes for the selected date.
- Red dashed line indicates the prediction date, and green dot shows the predicted traffic volume.
-
Traffic Light Control:
- Simulates changing traffic light colors (Red, Green, Yellow) to assess traffic flow dynamics.
-
Incident Reporting:
- Report traffic incidents by entering location and description.
- Click "Report Incident" to submit the report.
Code Overview
main.py
# Main application using Tkinter for GUI import tkinter as tk from tkinter import messagebox, ttk import pandas as pd import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg import random from datetime import datetime from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor # Mock data for demonstration data = { 'temperature': [25, 28, 30, 22, 20], 'precipitation': [0, 0, 0.2, 0.5, 0], 'hour': [8, 9, 10, 17, 18], 'traffic_volume': [100, 200, 400, 300, 250] } df = pd.DataFrame(data) # Feature engineering df['is_rush_hour'] = df['hour'].apply(lambda x: 1 if (x >= 7 and x <= 9) or (x >= 16 and x <= 18) else 0) # Model training X = df[['temperature', 'precipitation', 'is_rush_hour']] y = df['traffic_volume'] # Create models linear_model = LinearRegression() linear_model.fit(X, y) forest_model = RandomForestRegressor(n_estimators=100, random_state=42) forest_model.fit(X, y) class TrafficManagementApp: def __init__(self, root): # Initialization of GUI # ... def on_submit(self): # Handling traffic prediction submission # ... def update_graph(self, location, date_str, prediction): # Updating graph with historical and predicted traffic data # ... # Other methods for GUI components and functionality if __name__ == "__main__": root = tk.Tk() app = TrafficManagementApp(root) root.mainloop()
Conclusion
The Traffic Management System is a sophisticated tool for urban planners and traffic controllers, combining advanced predictive analytics with intuitive graphical interfaces. By forecasting traffic patterns and visualizing data trends, the system enhances decision-making capabilities and facilitates proactive management of traffic resources. Its user-friendly design ensures accessibility and practicality, making it a valuable asset in modern urban infrastructure management.
The above is the detailed content of Integrated Traffic Management System with Predictive Modeling and Visualization. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
