Home Backend Development Python Tutorial Integrated Traffic Management System with Predictive Modeling and Visualization

Integrated Traffic Management System with Predictive Modeling and Visualization

Jul 18, 2024 pm 12:04 PM

Integrated Traffic Management System with Predictive Modeling and Visualization

Overview

The Traffic Management System (TMS) presented here integrates predictive modeling and real-time visualization to facilitate efficient traffic control and incident management. Developed using Python and Tkinter for the graphical interface, this system leverages machine learning algorithms to forecast traffic volume based on weather conditions and rush hour dynamics. The application visualizes historical and predicted traffic data through interactive graphs, providing insights crucial for decision-making in urban traffic management.

Key Features

  • Traffic Prediction: Utilizes machine learning models (Linear Regression and Random Forest) to predict traffic volume based on temperature, precipitation, and rush hour indicators.
  • Graphical Visualization: Displays historical traffic trends alongside predicted volumes on interactive graphs, enhancing understanding and monitoring capabilities.
  • Real-time Traffic Simulation: Simulates traffic light changes to replicate real-world scenarios, aiding in assessing system responses under various conditions.
  • Incident Reporting: Allows users to report incidents, capturing location and description for prompt management and response.

Getting Started

Prerequisites

Ensure Python 3.x is installed. Install dependencies using pip:

pip install pandas matplotlib scikit-learn
Copy after login

Installation

  1. Clone the repository:
   git clone <https://github.com/EkeminiThompson/traffic_management_system.git>
   cd traffic-management-system
Copy after login
  1. Install dependencies:
   pip install -r requirements.txt
Copy after login
  1. Run the application:
   python main.py
Copy after login

Usage

  1. Traffic Prediction:

    • Select a location, date, and model (Linear Regression or Random Forest).
    • Click "Predict Traffic" to see the predicted traffic volume.
    • Clear the graph using "Clear Graph" button.
  2. Graphical Visualization:

    • The graph shows historical traffic data and predicted volumes for the selected date.
    • Red dashed line indicates the prediction date, and green dot shows the predicted traffic volume.
  3. Traffic Light Control:

    • Simulates changing traffic light colors (Red, Green, Yellow) to assess traffic flow dynamics.
  4. Incident Reporting:

    • Report traffic incidents by entering location and description.
    • Click "Report Incident" to submit the report.

Code Overview

main.py

# Main application using Tkinter for GUI

import tkinter as tk
from tkinter import messagebox, ttk
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
import random
from datetime import datetime
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor

# Mock data for demonstration
data = {
    'temperature': [25, 28, 30, 22, 20],
    'precipitation': [0, 0, 0.2, 0.5, 0],
    'hour': [8, 9, 10, 17, 18],
    'traffic_volume': [100, 200, 400, 300, 250]
}
df = pd.DataFrame(data)

# Feature engineering
df['is_rush_hour'] = df['hour'].apply(lambda x: 1 if (x >= 7 and x <= 9) or (x >= 16 and x <= 18) else 0)

# Model training
X = df[['temperature', 'precipitation', 'is_rush_hour']]
y = df['traffic_volume']

# Create models
linear_model = LinearRegression()
linear_model.fit(X, y)

forest_model = RandomForestRegressor(n_estimators=100, random_state=42)
forest_model.fit(X, y)

class TrafficManagementApp:
    def __init__(self, root):
        # Initialization of GUI
        # ...

    def on_submit(self):
        # Handling traffic prediction submission
        # ...

    def update_graph(self, location, date_str, prediction):
        # Updating graph with historical and predicted traffic data
        # ...

    # Other methods for GUI components and functionality

if __name__ == "__main__":
    root = tk.Tk()
    app = TrafficManagementApp(root)
    root.mainloop()
Copy after login

Conclusion

The Traffic Management System is a sophisticated tool for urban planners and traffic controllers, combining advanced predictive analytics with intuitive graphical interfaces. By forecasting traffic patterns and visualizing data trends, the system enhances decision-making capabilities and facilitates proactive management of traffic resources. Its user-friendly design ensures accessibility and practicality, making it a valuable asset in modern urban infrastructure management.

The above is the detailed content of Integrated Traffic Management System with Predictive Modeling and Visualization. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1246
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

See all articles