Home Backend Development Python Tutorial Efficiently Reading Millions of Rows of SQL Data with Python

Efficiently Reading Millions of Rows of SQL Data with Python

Jul 18, 2024 pm 05:57 PM

Efficiently Reading Millions of Rows of SQL Data with Python

Working with large datasets in SQL can be challenging, especially when you need to read millions of rows efficiently. Here’s a straightforward approach to handle this using Python, ensuring that your data processing remains performant and manageable.

Solved End-to-End Big Data and Data Science Projects

Use Efficient Database Drivers

Python has several database drivers like psycopg2 for PostgreSQL, mysql-connector-python for MySQL, and sqlite3 for SQLite. Choose the driver that best fits your database.

import mysql.connector

connection = mysql.connector.connect(
    host="your_host",
    user="your_username",
    password="your_password",
    database="your_database"
)
cursor = connection.cursor()
Copy after login

Fetch Data in Chunks

Fetching millions of rows at once can overwhelm your memory. Instead, fetch data in manageable chunks using a loop. This method keeps memory usage low and maintains performance.

chunk_size = 10000
offset = 0

while True:
    query = f"SELECT * FROM your_table LIMIT {chunk_size} OFFSET {offset}"
    cursor.execute(query)
    rows = cursor.fetchall()

    if not rows:
        break

    process_data(rows)
    offset += chunk_size
Copy after login

Process Data Efficiently

Ensure that your data processing within the process_data function is efficient. Avoid unnecessary computations and leverage vectorized operations with libraries like NumPy or Pandas.

import pandas as pd

def process_data(rows):
    df = pd.DataFrame(rows, columns=['col1', 'col2', 'col3'])
    # Perform operations on the DataFrame
    print(df.head())
Copy after login

Utilize Connection Pooling

For repetitive tasks, connection pooling can help manage database connections efficiently. Libraries like SQLAlchemy provide robust pooling solutions.

from sqlalchemy import create_engine

engine = create_engine("mysql+mysqlconnector://user:password@host/dbname")
connection = engine.connect()

chunk_size = 10000
offset = 0

while True:
    query = f"SELECT * FROM your_table LIMIT {chunk_size} OFFSET {offset}"
    result_proxy = connection.execute(query)
    rows = result_proxy.fetchall()

    if not rows:
        break

    process_data(rows)
    offset += chunk_size
Copy after login

By following these steps, you can efficiently read and process millions of rows of SQL data using Python. This approach ensures that your application remains responsive and performant, even when dealing with large datasets.

The above is the detailed content of Efficiently Reading Millions of Rows of SQL Data with Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot Article Tags

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

How Do I Use Beautiful Soup to Parse HTML?

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Image Filtering in Python

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

How to Use Python to Find the Zipf Distribution of a Text File

How to Work With PDF Documents Using Python How to Work With PDF Documents Using Python Mar 02, 2025 am 09:54 AM

How to Work With PDF Documents Using Python

How to Cache Using Redis in Django Applications How to Cache Using Redis in Django Applications Mar 02, 2025 am 10:10 AM

How to Cache Using Redis in Django Applications

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

How to Perform Deep Learning with TensorFlow or PyTorch?

How to Implement Your Own Data Structure in Python How to Implement Your Own Data Structure in Python Mar 03, 2025 am 09:28 AM

How to Implement Your Own Data Structure in Python

Serialization and Deserialization of Python Objects: Part 1 Serialization and Deserialization of Python Objects: Part 1 Mar 08, 2025 am 09:39 AM

Serialization and Deserialization of Python Objects: Part 1

See all articles