Given an array of intervals where intervals[i] = [starti, endi], merge all overlapping intervals, and return an array of the non-overlapping intervals that cover all the intervals in the input.
Example 1:
Input: intervals = [[1,3],[2,6],[8,10],[15,18]]
Output: [[1,6],[8,10],[15,18]]
Explanation: Since intervals [1,3] and [2,6] overlap, merge them into [1,6].
Example 2:
Input: intervals = [[1,4],[4,5]]
Output: [[1,5]]
Explanation: Intervals [1,4] and [4,5] are considered overlapping.
Constraints:
1 <= intervals.length <= 10^4
intervals[i].length == 2
0 <= starti <= endi <= 10^4
Original Page
public int[][] merge(int[][] intervals) { if(intervals.length <= 1){ return intervals; } Arrays.sort(intervals, (a,b)->{ return Integer.compare(a[0], b[0]); }); Listlist = new ArrayList(); for(int i=1; i = intervals[i][0]){ intervals[i][0] = intervals[i-1][0]; intervals[i][1] = Math.max(intervals[i-1][1], intervals[i][1]); } else{ list.add(intervals[i-1]); } } list.add(intervals[intervals.length-1]); return list.toArray(new int[list.size()][]); } 738. Monotone Increasing Digits
An integer has monotone increasing digits if and only if each pair of adjacent digits x and y satisfy x <= y.
Given an integer n, return the largest number that is less than or equal to n with monotone increasing digits.
Example 1:
Input: n = 10
Output: 9
Example 2:Input: n = 1234
Output: 1234
Example 3:Input: n = 332
Output: 299Constraints:
0 <= n <= 10^9
public int monotoneIncreasingDigits(int n) { if(n<10){ return n; } String str = Integer.toString(n); char[] arr = new char[str.length()]; arr[0] = str.charAt(0); int pos = -1; for(int i=1; iarr[i-1]){ pos = i; } arr[i] = str.charAt(i); } if(arr[0] <=0){ // cost space by using String str = new String(arr, 1,arr.length); }else{ str = new String(arr); } return Integer.valueOf(str); } The above is the detailed content of LeetCode DayGreedy Algorithms Part 5. For more information, please follow other related articles on the PHP Chinese website!