


K Nearest Neighbors Classification, Classification: Supervised Machine Learning
k-Nearest Neighbors Classification
Definition and Purpose
k-Nearest Neighbors (k-NN) classification is a non-parametric, instance-based learning algorithm used in machine learning to classify data points based on the classes of their nearest neighbors in the feature space. It assigns a class to a data point by considering the classes of its k closest neighbors. The main purpose of k-NN classification is to predict the class of new data points by leveraging the similarity to existing labeled data.
Key Objectives:
- Classification: Assigning new data points to one of the predefined classes based on the majority vote or weighted vote of the nearest neighbors.
- Estimation: Determining the likelihood of a data point belonging to a particular class.
- Understanding Relationships: Identifying which data points are similar in the feature space.
How k-NN Classification Works
1. Distance Metric: The algorithm uses a distance metric (commonly Euclidean distance) to determine the "closeness" of data points.
-
Euclidean Distance:
- d(p, q) = sqrt((p1 - q1)^2 + (p2 - q2)^2 + ... + (pn - qn)^2)
- Measures the straight-line distance between two points p and q in n-dimensional space.
2. Choosing k: The parameter k specifies the number of nearest neighbors to consider for making the classification decision.
- Small k: Can lead to overfitting, where the model is too sensitive to the training data.
- Large k: Can lead to underfitting, where the model is too generalized and may miss finer patterns in the data.
3. Majority Voting: The predicted class for a new data point is the class that is most common among its k nearest neighbors.
-
Majority Vote:
- Count the number of occurrences of each class among the k neighbors.
- Assign the class with the highest count to the new data point.
4. Weighted Voting: In some cases, neighbors are weighted according to their distance, with closer neighbors having more influence on the classification.
-
Weighted Vote:
- Weigh each neighbor's vote by the inverse of its distance.
- Sum the weighted votes for each class.
- Assign the class with the highest weighted sum to the new data point.
Key Concepts
Non-Parametric: k-NN is a non-parametric method, meaning it makes no assumptions about the underlying distribution of the data. This makes it flexible in handling various types of data.
Instance-Based Learning: The algorithm stores the entire training dataset and makes predictions based on the local patterns in the data. It is also known as a "lazy" learning algorithm because it delays processing until a query is made.
Distance Calculation: The choice of distance metric can significantly affect the model's performance. Common metrics include Euclidean, Manhattan, and Minkowski distances.
Choice of k: The value of k is a critical hyperparameter. Cross-validation is often used to determine the optimal value of k for a given dataset.
k-Nearest Neighbors (k-NN) Classification Example
k-Nearest Neighbors (k-NN) classification is a non-parametric, instance-based learning algorithm used to classify data points based on the classes of their nearest neighbors. This example demonstrates how to implement k-NN for multiclass classification using synthetic data, evaluate the model's performance, and visualize the decision boundary for three classes.
Python Code Example
1. Import Libraries
import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score, classification_report
This block imports the necessary libraries for data manipulation, plotting, and machine learning.
2. Generate Sample Data with 3 Classes
np.random.seed(42) # For reproducibility n_samples = 300 # Class 0: Cluster at the top-left corner X0 = np.random.randn(n_samples // 3, 2) * 0.5 + [-2, 2] # Class 1: Cluster at the top-right corner X1 = np.random.randn(n_samples // 3, 2) * 0.5 + [2, 2] # Class 2: Cluster at the bottom-center X2 = np.random.randn(n_samples // 3, 2) * 0.5 + [0, -2] # Combine all classes X = np.vstack((X0, X1, X2)) y = np.array([0] * (n_samples // 3) + [1] * (n_samples // 3) + [2] * (n_samples // 3))
This block generates synthetic data for three classes located in different regions of the feature space.
3. Split the Dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
This block splits the dataset into training and testing sets for model evaluation.
4. Create and Train the k-NN Classifier
k = 5 # Number of neighbors knn_classifier = KNeighborsClassifier(n_neighbors=k) knn_classifier.fit(X_train, y_train)
This block initializes the k-NN classifier with the specified number of neighbors and trains it using the training dataset.
5. Make Predictions
y_pred = knn_classifier.predict(X_test)
This block uses the trained model to make predictions on the test set.
6. Evaluate the Model
accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy:.2f}") print("\nClassification Report:") print(classification_report(y_test, y_pred))
Output:
Accuracy: 1.00 Classification Report: precision recall f1-score support 0 1.00 1.00 1.00 22 1 1.00 1.00 1.00 16 2 1.00 1.00 1.00 22 accuracy 1.00 60 macro avg 1.00 1.00 1.00 60 weighted avg 1.00 1.00 1.00 60
This block calculates and prints the accuracy and classification report, providing insights into the model's performance.
7. Visualize the Decision Boundary
h = 0.02 # Step size in the mesh x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = knn_classifier.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.figure(figsize=(12, 8)) plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdYlBu, edgecolors='black') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title(f'k-NN Classification (k={k})') plt.colorbar() plt.show()
This block visualizes the decision boundaries created by the k-NN classifier, illustrating how the model separates the three classes in the feature space.
Output:
This structured approach demonstrates how to implement and evaluate k-NN for multiclass classification tasks, providing a clear understanding of its capabilities and the effectiveness of visualizing decision boundaries.
The above is the detailed content of K Nearest Neighbors Classification, Classification: Supervised Machine Learning. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
