Home Technology peripherals AI Kuaishou open source LivePortrait, GitHub 6.6K Star, to achieve extremely fast migration of expressions and postures

Kuaishou open source LivePortrait, GitHub 6.6K Star, to achieve extremely fast migration of expressions and postures

Jul 19, 2024 pm 07:04 PM
quick worker industry Ke Ling large model

Recently, the Kuaishou Keling Model Team has open sourced a controllable portrait video generation framework called LivePortrait. This framework can accurately and real-time migrate the expressions and postures that drive the video to static or dynamic portrait videos, generating extremely Expressive video results. As shown in the following animation:

快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移

                                                                                                                                                                                    .                          From netizens testing LivePortrait
快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移
The corresponding paper title of Kuaishou open source LivePortrait is: 《 LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control 》

                                          , LivePortrait is available immediately after release, adhering to the Kuaishou style, connecting papers, homepages, and codes with one click. Once LivePortrait was open sourced, it got the attention and forwarding of
HuggingFace CEO Clément Delangue
, and
Chief Strategy Officer Thomas Wolf

even experienced the function personally, it’s amazing! 快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移

and aroused large-scale comments from netizens all over the world:

At the same time, LivePotrait has gained widespread attention from the open source community. In just over a week, a total of

6.4K Stars, 550 Forks, and 140 Issues&PRs快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移 have been collected on GitHub. It has received widespread praise and attention is still growing:

In addition, HuggingFace Space and Papers with code trend list 快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移Leading the list for one week in a row, recently topped the HuggingFace all theme ranking list
Top 1
:

HuggingFace Space top 1
快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移
Papers with code list 1
HuggingFace all theme ranking one

快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移


Weitere Ressourceninformationen finden Sie unter:

  • Codeadresse: https://github.com/KwaiVGI/LivePortrait
  • Papierlink: https://arxiv.org/ abs /2407.03168
  • Projekthomepage: https://liveportrait.github.io/
  • HuggingFace Space One-Click-Online-Erlebnis: https://huggingface.co/spaces/KwaiVGI/LivePortrait

Welche Art von Technologie nutzt LivePortrait, um schnell im gesamten Internet populär zu werden? Methodeneinführung LivePortrait konzentriert sich auf eine bessere Verallgemeinerung, Kontrollierbarkeit und praktische Effizienz. Um die Generierungsfähigkeiten und die Steuerbarkeit zu verbessern, verwendet LivePortrait 69 Millionen hochwertige Trainingsrahmen, eine Video-Bild-Hybrid-Trainingsstrategie, aktualisiert die Netzwerkstruktur und entwickelt bessere Methoden zur Aktionsmodellierung und -optimierung. Darüber hinaus betrachtet LivePortrait implizite Schlüsselpunkte als wirksame implizite Darstellung der Verformung der Gesichtsmischung (Blendshape) und schlägt darauf basierend sorgfältig Stitching- und Retargeting-Module vor. Bei diesen beiden Modulen handelt es sich um leichte MLP-Netzwerke, sodass die Steuerbarkeit zwar verbessert wird, der Rechenaufwand jedoch vernachlässigt werden kann. Selbst im Vergleich zu einigen bestehenden, auf Diffusionsmodellen basierenden Methoden ist LivePortrait immer noch sehr effektiv. Gleichzeitig kann die Einzelbildgenerierungsgeschwindigkeit von LivePortrait auf der RTX4090-GPU 12,8 ms erreichen. Bei weiterer Optimierung, wie z. B. TensorRT, wird erwartet, dass sie weniger als 10 ms erreicht.

Die Modelausbildung von LivePortrait ist in zwei Phasen unterteilt. Die erste Stufe ist die grundlegende Modellschulung und die zweite Stufe ist die Schulung des Anpassungs- und Umleitungsmoduls.

Die erste Stufe der Grundmodellausbildung
模 Die erste Phase des grundlegenden Modelltrainings

In der ersten Phase des Modelltrainings hat LivePortrait eine Reihe von Verbesserungen am auf versteckten Punkten basierenden Framework vorgenommen, z. B. Face vid2vid [1], darunter:

Hochwertige Trainingsdatenerfassung
: LivePortrait übernimmt den öffentlichen Videodatensatz Voxceleb[2], MEAD[3], RAVDESS[4] und den stilisierten Bilddatensatz AAHQ[5]. Darüber hinaus werden großformatige Porträtvideos mit 4K-Auflösung verwendet, darunter verschiedene Gesichtsausdrücke und Körperhaltungen, mehr als 200 Stunden sprechende Porträtvideos, ein privater Datensatz LightStage [6] sowie einige stilisierte Videos und Bilder. LivePortrait teilt lange Videos in Segmente von weniger als 30 Sekunden auf und stellt sicher, dass jedes Segment nur eine Person enthält. Um die Qualität der Trainingsdaten sicherzustellen, verwendet LivePortrait Kuaishous selbst entwickeltes KVQ [7] (Kuaishous selbst entwickelte Methode zur Bewertung der Videoqualität, mit der Qualität, Inhalt, Szene, Ästhetik, Kodierung, Audio und andere Merkmale umfassend wahrgenommen werden können das Video, um eine mehrdimensionale Auswertung durchzuführen), um Videoclips mit geringer Qualität zu filtern. Die gesamten Trainingsdaten umfassen 69 Millionen Videos, darunter 18,9.000 Identitäten und 60.000 statische stilisierte Porträts.

Video-Bild-Hybrid-Training
: Modelle, die nur mit Videos von echten Menschen trainiert wurden, schneiden bei echten Menschen gut ab, verfügen jedoch nicht über eine unzureichende Verallgemeinerungsfähigkeit für stilisierte Menschen (z. B. Anime). Stilisierte Porträtvideos sind seltener, wobei LivePortrait nur etwa 1,3.000 Videoclips von weniger als 100 Identitäten sammelt. Im Gegensatz dazu sind qualitativ hochwertige stilisierte Porträtbilder häufiger anzutreffen. LivePortrait hat etwa 60.000 Bilder mit unterschiedlichen Identitäten gesammelt und bietet vielfältige Identitätsinformationen. Um beide Datentypen zu nutzen, behandelt LivePortrait jedes Bild als Videoclip und trainiert das Modell gleichzeitig für Videos und Bilder. Dieses Hybridtraining verbessert die Generalisierungsfähigkeit des Modells.

Verbesserte Netzwerkstruktur
: LivePortrait vereint das kanonische Netzwerk zur Schätzung impliziter Schlüsselpunkte (L), das Netzwerk zur Schätzung der Kopfhaltung (H) und das Netzwerk zur Schätzung der Ausdrucksverformung (Δ) in einem einzigen Modell (M). verwendet ConvNeXt-V2-Tiny [8] als Struktur, um die kanonischen impliziten Schlüsselpunkte, die Kopfhaltung und die Ausdrucksverformung des Eingabebildes direkt abzuschätzen. Darüber hinaus verwendet LivePortrait, inspiriert von der verwandten Arbeit von face vid2vid, den effektiveren Decoder von SPADE [9] als Generator (G). Die latenten Merkmale (fs) werden nach der Verformung fein in den SPADE-Decoder eingespeist, wo jeder Kanal der latenten Merkmale als semantische Karte zur Erzeugung des gesteuerten Bildes verwendet wird. Um die Effizienz zu verbessern, fügt LivePortrait außerdem die Ebene PixelShuffle[10] als letzte Ebene von (G) ein und erhöht so die Auflösung von 256 auf 512.

Flexiblere Aktionstransformationsmodellierung
: Die Berechnungs- und Modellierungsmethode der ursprünglichen impliziten Schlüsselpunkte ignoriert den Skalierungskoeffizienten, was dazu führt, dass die Skalierung leicht in den Ausdruckskoeffizienten gelernt werden kann, was das Training schwieriger macht. Um dieses Problem zu lösen, führt LivePortrait Skalierungsfaktoren in die Modellierung ein. LivePortrait hat herausgefunden, dass die Skalierung regelmäßiger Projektionen zu übermäßig flexiblen erlernbaren Ausdruckskoeffizienten führen kann, was bei der Steuerung über Identitäten hinweg zu Texturanhaftungen führt. Daher ist die von LivePortrait übernommene Transformation ein Kompromiss zwischen Flexibilität und Fahrbarkeit.

Schlüsselpunktgesteuerte implizite Schlüsselpunktoptimierung
: Dem ursprünglichen impliziten Punktrahmen scheint die Fähigkeit zu fehlen, Gesichtsausdrücke wie Augenzwinkern und Augenbewegungen anschaulich zu steuern. Insbesondere neigen die Augapfelrichtung und die Kopfausrichtung des Porträts in den Fahrergebnissen dazu, parallel zu bleiben. LivePortrait führt diese Einschränkungen auf die Schwierigkeit zurück, subtile Gesichtsausdrücke unbeaufsichtigt zu erlernen. Um dieses Problem zu lösen, führt LivePortrait 2D-Schlüsselpunkte zur Erfassung von Mikroausdrücken ein und verwendet dabei den schlüsselpunktgesteuerten Verlust (Lguide) als Leitfaden für die implizite Schlüsselpunktoptimierung.

Kaskadenverlustfunktion
: LivePortrait verwendet den impliziten Schlüsselpunktinvariantenverlust (LE), den Schlüsselpunktpriorverlust (LL), den Kopfhaltungsverlust (LH) und den Deformationspriorverlust (LΔ) von Face vid2vid. Um die Texturqualität weiter zu verbessern, verwendet LivePortrait Wahrnehmungs- und GAN-Verluste, die nicht nur auf die globale Domäne des Eingabebildes angewendet werden, sondern auch auf die lokale Domäne von Gesicht und Mund, aufgezeichnet als Kaskaden-Wahrnehmungsverlust (LP, Kaskade) und Kaskaden-GAN-Verlust (LG, Kaskade). Die Gesichts- und Mundbereiche werden durch semantische 2D-Schlüsselpunkte definiert. LivePortrait nutzt außerdem den Verlust der Gesichtsidentität (Lfaceid), um die Identität des Referenzbildes zu bewahren.
Alle Module in der ersten Stufe werden von Grund auf trainiert, und die gesamte Trainingsoptimierungsfunktion (Lbase) ist die gewichtete Summe der oben genannten Verlustterme.

Anpassungs- und Umleitungsmodulschulung der zweiten Stufe
LivePortrait kann implizite Schlüsselpunkte als implizite Mischdeformation betrachten und hat festgestellt, dass diese Kombination nur die Hilfe eines leichten MLP erfordert. Es kann besser gelernt werden und Der Rechenaufwand ist vernachlässigbar. Unter Berücksichtigung der tatsächlichen Bedürfnisse hat LivePortrait ein Anpassungsmodul, ein Augenumleitungsmodul und ein Mundumleitungsmodul entwickelt.Wenn das Referenzporträt zugeschnitten wird, wird das gesteuerte Porträt aus dem Zuschneidebereich wieder in den ursprünglichen Bildbereich eingefügt. Das Anpassungsmodul wird hinzugefügt, um eine Pixelfehlausrichtung während des Einfügevorgangs zu vermeiden, z. B. im Schulterbereich. Dadurch kann LivePortrait für größere Bildformate oder Gruppenfotos aktionsgesteuert sein. Das Eye-Retargeting-Modul soll das Problem des unvollständigen Augenschlusses beim Überqueren von Identitäten lösen, insbesondere wenn ein Porträt mit kleinen Augen ein Porträt mit großen Augen antreibt. Die Designidee des Mundumleitungsmoduls ähnelt der des Augenumleitungsmoduls, das die Eingabe normalisiert, indem es den Mund des Referenzbilds zur besseren Steuerung in einen geschlossenen Zustand versetzt. Die zweite Phase des Modelltrainings: Anpassen und Umleiten des Modultrainings

快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移

Folgen Sie dem Modul : Während des Trainingsprozesses ist die Eingabe des Moduls/der Module das Referenzdiagramm implizite Schlüsselpunkte (xd) eines anderen identitätsgesteuerten Rahmens und schätzen Sie die Ausdrucksänderung (Δst), die die impliziten Schlüsselpunkte (xd) antreibt. Es ist ersichtlich, dass LivePortrait im Gegensatz zur ersten Stufe identitätsübergreifende Aktionen verwendet, um identitätsübergreifende Aktionen zu ersetzen, um die Schwierigkeit des Trainings zu erhöhen und eine bessere Generalisierung des Anpassungsmoduls zu erreichen. Als nächstes wird der implizite Treiberschlüsselpunkt (xd) aktualisiert und die entsprechende Treiberausgabe ist (Ip,st). LivePortrait gibt in dieser Phase auch selbst rekonstruierte Bilder (Ip,recon) aus. Schließlich berechnet die Verlustfunktion (Lst) des Anpassungsmoduls den pixelkonsistenten Verlust des Schulterbereichs beider Schultern und den Regularisierungsverlust der Anpassungsvariation.

Augen- und Mundumleitungsmodul: Die Eingabe des Augenumleitungsmoduls (Reyes) ist der implizite Schlüsselpunkt (xs) des Referenzbilds, das Referenzbild-Augenöffnungsbedingungstupel und ein zufälliger treibender Augenöffnungskoeffizient Wird verwendet, um die Verformungsänderung (Δeyes) des Antriebsschlüsselpunkts abzuschätzen. Das Tupel der Augenöffnungsbedingung stellt das Augenöffnungsverhältnis dar. Je größer es ist, desto größer ist der Grad der Augenöffnung. In ähnlicher Weise sind die Eingaben des Mundumleitungsmoduls (Rlip) die impliziten Schlüsselpunkte (xs) des Referenzbilds, der Mundöffnungsbedingungskoeffizient des Referenzbilds und ein zufälliger steuernder Mundöffnungskoeffizient, und die steuernden Schlüsselpunkte werden daraus geschätzt Dies ist der Betrag der Änderung (Δlip). Als nächstes werden die Antriebsschlüsselpunkte (xd) durch die Verformungsänderungen aktualisiert, die den Augen bzw. dem Mund entsprechen, und die entsprechenden Antriebsausgaben sind (Ip, Augen) und (Ip, Lippe). Schließlich sind die Zielfunktionen der Augen- und Mund-Retargeting-Module (Leyes) bzw. (Llip), die den Pixelkonsistenzverlust der Augen- und Mundbereiche, den Regularisierungsverlust der Augen- und Mundvariation und den Zufallsverlust berechnen. Der Verlust zwischen dem Antriebskoeffizienten und dem Öffnungszustandskoeffizienten des Antriebsausgangs. Die Augen- und Mundänderungen (Δeyes) und (Δlip) sind unabhängig voneinander, sodass sie während der Inferenzphase linear summiert und die treibenden impliziten Schlüsselpunkte aktualisiert werden können. Experimenteller Vergleich -basierte Methode, LivePortrait Mit besserer Generierungsqualität und Fahrgenauigkeit kann es die subtilen Ausdrücke der Augen- und Mund-Fahrbilder erfassen und gleichzeitig die Textur und Identität des Referenzbildes bewahren. Selbst bei größeren Kopfhaltungen bietet LivePortrait eine stabilere Leistung.

Identitätsübergreifender Fahrer: Wie aus den obigen Ergebnissen des identitätsübergreifenden Fahrervergleichs hervorgeht, kann LivePortrait im Vergleich zu bestehenden Methoden die subtilen Augen- und Mundbewegungen im Fahrervideo genau erben und ist auch bei der Körperhaltung relativ stabil ist groß. . LivePortrait ist hinsichtlich der Generierungsqualität etwas schwächer als die auf Diffusionsmodellen basierende Methode AniPortrait [11], im Vergleich zu letzterer weist LivePortrait jedoch eine extrem schnelle Inferenzeffizienz auf und erfordert weniger FLOPs.

Erweiterung

Mehrpersonen-Fahrer: Dank des Anpassungsmoduls von LivePortrait kann LivePortrait für Gruppenfotos bestimmte Gesichter mit bestimmten Fahrervideos steuern und so eine Erweiterung des Mehrpersonen-Fotofahrers erreichen die praktische Anwendung von LivePortrait. 快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移
Tiergesteuert: LivePortrait bietet nicht nur eine gute Verallgemeinerung für Porträts, sondern kann nach einer Feinabstimmung der Tierdatensätze auch präzise für Tierporträts gesteuert werden.

快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移

Bearbeitung von Porträtvideos: Zusätzlich zu Porträtfotos kann LivePortrait bei einem Porträtvideo, beispielsweise einem Tanzvideo, das Fahrvideo verwenden, um eine Bewegungsbearbeitung im Kopfbereich durchzuführen. Dank des Anpassungsmoduls kann LivePortrait Bewegungen im Kopfbereich, wie Mimik, Körperhaltung usw., präzise bearbeiten, ohne die Bilder in Nicht-Kopf-Bereichen zu beeinträchtigen. 快手开源LivePortrait,GitHub 6.6K Star,实现表情姿态极速迁移
Implementierung und Aussichten

Die damit verbundenen technischen Punkte von LivePortrait wurden in vielen Unternehmen von Kuaishou implementiert, darunter Kuaishou Magic Watch, Kuaishou Private Messaging, Kuaiyings KI-Emoticon-Gameplay und Live-Übertragung, und die von Kuaishou usw. ins Leben gerufene Puchi APP für junge Menschen und wird neue Implementierungsmethoden erkunden, um weiterhin Mehrwert für Benutzer zu schaffen. Darüber hinaus wird LivePortrait die multimodale Erstellung von Porträtvideos basierend auf dem Keling-Grundmodell weiter erforschen und dabei höherwertige Effekte anstreben.

Referenzen
[1] Ting-Chun Wang, Arun Mallya und Ming-Yu Liu. One-Shot-Free-View-Neuronal-Talking-Head-Synthese für Videokonferenzen. In CVPR, 2021 .
[2] Arsha Nagrani, Joon Son Chung und Andrew Zisserman: ein umfangreicher Sprecheridentifikationsdatensatz.
[3] Kaisiyuan Wang, Qianyi Wu , Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He, Yu Qiao und Chen Change Loy: Ein umfangreicher audiovisueller Datensatz für die Erzeugung emotionaler sprechender Gesichter.
[4] Steven R Livingstone und Frank A Russo. Die audiovisuelle Datenbank von Ryerson für emotionale Sprache und Gesang (Ravdess): Ein dynamischer, multimodaler Satz von Gesichts- und Stimmausdrücken in nordamerikanischem Englisch, 2018
[5] Mingcong Liu, Qiang Li, Zekui Qin, Guoxin Zhang, Pengfei Wan und Wen Zheng: Implizite Gan-Mischung für die Erzeugung beliebig stilisierter Gesichter.
[ 6 ] Haotian Yang, Mingwu Zheng, Wanquan Feng, Haibin Huang, Yu-Kun Lai, Pengfei Wan, Zhongyuan Wang und Chongyang Ma. Auf dem Weg zur praktischen Erfassung von wiederaufladbaren Avataren mit hoher Wiedergabetreue, 2023 [7] Kai Zhao, Kun Yuan, Ming Sun, Mading Li und Xing Wen. Qualitätsbewusste vorab trainierte Modelle für blinde Bildqualitätsbewertung, 2023. 8] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon und Saining Xie. vnext v2: Co-Design und Skalierung von Convnets mit maskierten Autoencodern .
[9] Taesung Park, Ming-Yu Liu, Ting-Chun Wang und Jun-Yan Zhu. In CVPR, 2019.
10] Wenzhe Shi, Jose Caballero, Ferenc Husz ´ar, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel Rueckert und Zehan Wang. Echtzeit-Einzelbild- und Video-Superauflösung unter Verwendung eines effizienten Subpixel-Faltungs-Neuronalen Netzwerks. In CVPR, 2016.
[11] Huawei Wei, Zejun Yang und Zhisheng Wang Aniportrait: Audiogesteuerte Synthese fotorealistischer Porträtanimationen: 2403.17694, 2024.

The above is the detailed content of Kuaishou open source LivePortrait, GitHub 6.6K Star, to achieve extremely fast migration of expressions and postures. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1267
29
C# Tutorial
1239
24
DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners Aug 09, 2024 pm 04:01 PM

But maybe he can’t defeat the old man in the park? The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis. Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis. Paper address: https://arxiv.org/pdf/2408.03906 How good is the DeepMind robot at playing table tennis? Probably on par with human amateur players: both forehand and backhand: the opponent uses a variety of playing styles, and the robot can also withstand: receiving serves with different spins: However, the intensity of the game does not seem to be as intense as the old man in the park. For robots, table tennis

The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home Aug 21, 2024 pm 07:33 PM

On August 21, the 2024 World Robot Conference was grandly held in Beijing. SenseTime's home robot brand "Yuanluobot SenseRobot" has unveiled its entire family of products, and recently released the Yuanluobot AI chess-playing robot - Chess Professional Edition (hereinafter referred to as "Yuanluobot SenseRobot"), becoming the world's first A chess robot for the home. As the third chess-playing robot product of Yuanluobo, the new Guoxiang robot has undergone a large number of special technical upgrades and innovations in AI and engineering machinery. For the first time, it has realized the ability to pick up three-dimensional chess pieces through mechanical claws on a home robot, and perform human-machine Functions such as chess playing, everyone playing chess, notation review, etc.

Claude has become lazy too! Netizen: Learn to give yourself a holiday Claude has become lazy too! Netizen: Learn to give yourself a holiday Sep 02, 2024 pm 01:56 PM

The start of school is about to begin, and it’s not just the students who are about to start the new semester who should take care of themselves, but also the large AI models. Some time ago, Reddit was filled with netizens complaining that Claude was getting lazy. "Its level has dropped a lot, it often pauses, and even the output becomes very short. In the first week of release, it could translate a full 4-page document at once, but now it can't even output half a page!" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ in a post titled "Totally disappointed with Claude", full of

At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded Aug 22, 2024 pm 10:35 PM

At the World Robot Conference being held in Beijing, the display of humanoid robots has become the absolute focus of the scene. At the Stardust Intelligent booth, the AI ​​robot assistant S1 performed three major performances of dulcimer, martial arts, and calligraphy in one exhibition area, capable of both literary and martial arts. , attracted a large number of professional audiences and media. The elegant playing on the elastic strings allows the S1 to demonstrate fine operation and absolute control with speed, strength and precision. CCTV News conducted a special report on the imitation learning and intelligent control behind "Calligraphy". Company founder Lai Jie explained that behind the silky movements, the hardware side pursues the best force control and the most human-like body indicators (speed, load) etc.), but on the AI ​​side, the real movement data of people is collected, allowing the robot to become stronger when it encounters a strong situation and learn to evolve quickly. And agile

ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

At this ACL conference, contributors have gained a lot. The six-day ACL2024 is being held in Bangkok, Thailand. ACL is the top international conference in the field of computational linguistics and natural language processing. It is organized by the International Association for Computational Linguistics and is held annually. ACL has always ranked first in academic influence in the field of NLP, and it is also a CCF-A recommended conference. This year's ACL conference is the 62nd and has received more than 400 cutting-edge works in the field of NLP. Yesterday afternoon, the conference announced the best paper and other awards. This time, there are 7 Best Paper Awards (two unpublished), 1 Best Theme Paper Award, and 35 Outstanding Paper Awards. The conference also awarded 3 Resource Paper Awards (ResourceAward) and Social Impact Award (

Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Sep 03, 2024 pm 05:18 PM

Deep integration of vision and robot learning. When two robot hands work together smoothly to fold clothes, pour tea, and pack shoes, coupled with the 1X humanoid robot NEO that has been making headlines recently, you may have a feeling: we seem to be entering the age of robots. In fact, these silky movements are the product of advanced robotic technology + exquisite frame design + multi-modal large models. We know that useful robots often require complex and exquisite interactions with the environment, and the environment can be represented as constraints in the spatial and temporal domains. For example, if you want a robot to pour tea, the robot first needs to grasp the handle of the teapot and keep it upright without spilling the tea, then move it smoothly until the mouth of the pot is aligned with the mouth of the cup, and then tilt the teapot at a certain angle. . this

Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Aug 08, 2024 am 07:02 AM

This afternoon, Hongmeng Zhixing officially welcomed new brands and new cars. On August 6, Huawei held the Hongmeng Smart Xingxing S9 and Huawei full-scenario new product launch conference, bringing the panoramic smart flagship sedan Xiangjie S9, the new M7Pro and Huawei novaFlip, MatePad Pro 12.2 inches, the new MatePad Air, Huawei Bisheng With many new all-scenario smart products including the laser printer X1 series, FreeBuds6i, WATCHFIT3 and smart screen S5Pro, from smart travel, smart office to smart wear, Huawei continues to build a full-scenario smart ecosystem to bring consumers a smart experience of the Internet of Everything. Hongmeng Zhixing: In-depth empowerment to promote the upgrading of the smart car industry Huawei joins hands with Chinese automotive industry partners to provide

Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Aug 22, 2024 pm 08:02 PM

Conference Introduction With the rapid development of science and technology, artificial intelligence has become an important force in promoting social progress. In this era, we are fortunate to witness and participate in the innovation and application of Distributed Artificial Intelligence (DAI). Distributed artificial intelligence is an important branch of the field of artificial intelligence, which has attracted more and more attention in recent years. Agents based on large language models (LLM) have suddenly emerged. By combining the powerful language understanding and generation capabilities of large models, they have shown great potential in natural language interaction, knowledge reasoning, task planning, etc. AIAgent is taking over the big language model and has become a hot topic in the current AI circle. Au

See all articles