


7B's most powerful long video model! LongVA video understanding exceeds 1,000 frames, dominating multiple lists

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com
The main authors of this article are from the LMMs-Lab team and Nanyang Technological University, Singapore. In the joint work, Zhang Peiyuan is a research assistant at Nanyang Technological University, Zhang Kaichen is a fourth-year undergraduate student at Nanyang Technological University, and Li Bo is a third-year doctoral student at Nanyang Technological University. The supervisor is Professor Liu Ziwei from MMLab@NTU. LMMs-Lab is a team composed of students, researchers and teachers, dedicated to the research of multi-modal models. The main research directions include the training and comprehensive evaluation of multi-modal models. Previous work includes the multi-modal evaluation framework lmms- eval etc.
Why is it said that understanding long videos is as difficult as “finding a needle in a haystack”?
A major challenge faced by existing LMMs when processing long videos is the excessive number of visual tokens. For example, LLaVA-1.6 can generate 576 to 2880 visual tokens for a single image. The more frames the video has, the greater the number of tokens. Although BLIP2, LLaMA-VID, Chat-UniVI and other work reduce the number of visual tokens by changing the connection layer between ViT and language model, they still cannot handle a particularly large number of frames.
In addition, the lack of high-quality long video data sets is also a major bottleneck. Existing training datasets are mostly short videos within 1 minute, and even if there are long videos, the annotated text pairs are limited to a few frames of the video, lacking dense supervision signals.
Recently, research teams from LMMs-Lab, Nanyang Technological University and other institutions launched the LongVA long video model, which can understand more than a thousand frames of video data, surpassing the performance of current open source video multi-modal models!
Paper link: https://arxiv.org/abs/2406.16852
Demo address: https://longva-demo.lmms-lab.com/
Code address: https ://github.com/EvolvingLMMs-Lab/LongVA
The author team proposed Long Context Transfer (Long Context Transfer) for the first time in the multi-modal field. This technology enables multi-modal large models (LMMs) to be processed without In the case of long video training, process and understand extremely long videos. Their new model LongVA can process 2000 frames or more than 200,000 visual tokens, achieving a 7B scale SoTA on the video understanding list Video-MME. In the latest long video MLVU list, LongVA is the strongest model after GPT4-o!
The author of LongVA summarized the picture below. It can be seen that the current multi-modal large model is not satisfactory in understanding long videos. The number of frames that can be processed limits the processing and understanding of long videos. In order to process more frames, work such as LLaMA-VID has to drastically compress the number of tokens corresponding to a single frame.
Long context migration
In response to the challenges faced in processing long videos, the research team proposed a new idea of "long context migration". They believe that the current multi-frame bottleneck of large long video models is not in how to extract compressed features from Vision Encoder (Figure (a) below), but in the long context capabilities of the extended model.
They found that by simply extending the context length of the language model on text, they could successfully transfer this ability to the visual modality without any long video training. The specific approach is to first train the language model through long text data, and then use short image data for modal alignment. They found that the model trained in this way can directly understand multi-frame videos during testing, eliminating the need for long video training.
During the long language model training process, the author team used Qwen2-7B-Instruct as the base and extended its text context length to 224K through long context training. During the training process, various optimization strategies such as FlashAttention-2, Ring Attention, activation checkpoint and parameter offload are used to improve training efficiency and memory utilization.
モーダル調整の段階で、著者は画像とビデオを同時に処理するための「UniRes」と呼ばれる統一エンコード方式を設計しました。 UniRes スキームは、LLaVA-1.6 の AnyRes エンコード スキームに似ていますが、ベース画像部分が削除され、各グリッドは 1 次元であり、各グリッド内で 2x2 の特徴プーリングが実行されます。このアプローチにより、画像データをビデオに拡張するときに一貫した表現が維持されます。
LongVA は、「短いコンテキスト トレーニング、長いコンテキスト テスト」の戦略を採用しています。これは、モデルがモーダル アライメント段階でのトレーニングに画像テキスト データのみを使用し、テスト中の処理とテストに長いビデオを直接使用することを意味します。この戦略は、長いコンテキスト転送の現象を効果的に実証し、モデルが長いビデオ トレーニングなしで長いビデオを理解して処理できるようにします。
LongVA のスーパーパフォーマンス
現在、長いビデオの LMM の視覚的なコンテキストの長さを評価するベンチマークはありません。この問題を解決するために、LongVA チームは干し草の中の針テストをテキストからビジュアルに拡張し、Visual Needle-In-A-Haystack (V-NIAH) ベンチマークを提案しました。
V-NIAH テストでは、チームは 5 つの画像の質問と回答の質問を設計し、各質問を 1 つのフレームとして数時間の映画に挿入し、視覚入力として 1 フレーム/秒の頻度でビデオをサンプリングしました。これらの「針」の画像は、モデルが言語知識だけでは質問に回答できないことを保証するために、既存の視覚的な質問回答データセットまたは AI 生成画像から派生しています。各質問には、正しいシステムまたは人間がビデオから「ピン」フレームを見つけて質問に答えることを可能にする「ローカリゼーション ヒント」が含まれています。
V-NIAH テストの結果は、LongVA の視覚的な干し草の山に針を刺すテストが 2000 フレーム (フレームあたり 144 トークン) 以内でほぼ正確であり、3000 フレームのスケールでも良好な精度率を維持していることを示しています。興味深いことに、言語モデルと同様に、LongVA にも V-NIAH である程度の Lost-In-The-Middle 現象があることがわかりました。
Tencent、中国科学技術大学、その他の機関が提案した最近のビデオ MME リストでは、LongVA が 7 位にランクされ、7B モデルの SoTA に到達しました。 /https://video-mme.github.io/home_page.html#leaderboard
著者チームは、論文にいくつかの効果のデモンストレーションも添付しました。
The above is the detailed content of 7B's most powerful long video model! LongVA video understanding exceeds 1,000 frames, dominating multiple lists. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

But maybe he can’t defeat the old man in the park? The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis. Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis. Paper address: https://arxiv.org/pdf/2408.03906 How good is the DeepMind robot at playing table tennis? Probably on par with human amateur players: both forehand and backhand: the opponent uses a variety of playing styles, and the robot can also withstand: receiving serves with different spins: However, the intensity of the game does not seem to be as intense as the old man in the park. For robots, table tennis

On August 21, the 2024 World Robot Conference was grandly held in Beijing. SenseTime's home robot brand "Yuanluobot SenseRobot" has unveiled its entire family of products, and recently released the Yuanluobot AI chess-playing robot - Chess Professional Edition (hereinafter referred to as "Yuanluobot SenseRobot"), becoming the world's first A chess robot for the home. As the third chess-playing robot product of Yuanluobo, the new Guoxiang robot has undergone a large number of special technical upgrades and innovations in AI and engineering machinery. For the first time, it has realized the ability to pick up three-dimensional chess pieces through mechanical claws on a home robot, and perform human-machine Functions such as chess playing, everyone playing chess, notation review, etc.

The start of school is about to begin, and it’s not just the students who are about to start the new semester who should take care of themselves, but also the large AI models. Some time ago, Reddit was filled with netizens complaining that Claude was getting lazy. "Its level has dropped a lot, it often pauses, and even the output becomes very short. In the first week of release, it could translate a full 4-page document at once, but now it can't even output half a page!" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ in a post titled "Totally disappointed with Claude", full of

At the World Robot Conference being held in Beijing, the display of humanoid robots has become the absolute focus of the scene. At the Stardust Intelligent booth, the AI robot assistant S1 performed three major performances of dulcimer, martial arts, and calligraphy in one exhibition area, capable of both literary and martial arts. , attracted a large number of professional audiences and media. The elegant playing on the elastic strings allows the S1 to demonstrate fine operation and absolute control with speed, strength and precision. CCTV News conducted a special report on the imitation learning and intelligent control behind "Calligraphy". Company founder Lai Jie explained that behind the silky movements, the hardware side pursues the best force control and the most human-like body indicators (speed, load) etc.), but on the AI side, the real movement data of people is collected, allowing the robot to become stronger when it encounters a strong situation and learn to evolve quickly. And agile

At this ACL conference, contributors have gained a lot. The six-day ACL2024 is being held in Bangkok, Thailand. ACL is the top international conference in the field of computational linguistics and natural language processing. It is organized by the International Association for Computational Linguistics and is held annually. ACL has always ranked first in academic influence in the field of NLP, and it is also a CCF-A recommended conference. This year's ACL conference is the 62nd and has received more than 400 cutting-edge works in the field of NLP. Yesterday afternoon, the conference announced the best paper and other awards. This time, there are 7 Best Paper Awards (two unpublished), 1 Best Theme Paper Award, and 35 Outstanding Paper Awards. The conference also awarded 3 Resource Paper Awards (ResourceAward) and Social Impact Award (

Deep integration of vision and robot learning. When two robot hands work together smoothly to fold clothes, pour tea, and pack shoes, coupled with the 1X humanoid robot NEO that has been making headlines recently, you may have a feeling: we seem to be entering the age of robots. In fact, these silky movements are the product of advanced robotic technology + exquisite frame design + multi-modal large models. We know that useful robots often require complex and exquisite interactions with the environment, and the environment can be represented as constraints in the spatial and temporal domains. For example, if you want a robot to pour tea, the robot first needs to grasp the handle of the teapot and keep it upright without spilling the tea, then move it smoothly until the mouth of the pot is aligned with the mouth of the cup, and then tilt the teapot at a certain angle. . this

This afternoon, Hongmeng Zhixing officially welcomed new brands and new cars. On August 6, Huawei held the Hongmeng Smart Xingxing S9 and Huawei full-scenario new product launch conference, bringing the panoramic smart flagship sedan Xiangjie S9, the new M7Pro and Huawei novaFlip, MatePad Pro 12.2 inches, the new MatePad Air, Huawei Bisheng With many new all-scenario smart products including the laser printer X1 series, FreeBuds6i, WATCHFIT3 and smart screen S5Pro, from smart travel, smart office to smart wear, Huawei continues to build a full-scenario smart ecosystem to bring consumers a smart experience of the Internet of Everything. Hongmeng Zhixing: In-depth empowerment to promote the upgrading of the smart car industry Huawei joins hands with Chinese automotive industry partners to provide

Conference Introduction With the rapid development of science and technology, artificial intelligence has become an important force in promoting social progress. In this era, we are fortunate to witness and participate in the innovation and application of Distributed Artificial Intelligence (DAI). Distributed artificial intelligence is an important branch of the field of artificial intelligence, which has attracted more and more attention in recent years. Agents based on large language models (LLM) have suddenly emerged. By combining the powerful language understanding and generation capabilities of large models, they have shown great potential in natural language interaction, knowledge reasoning, task planning, etc. AIAgent is taking over the big language model and has become a hot topic in the current AI circle. Au
