JAVA Tutorial
Java File
The problem of finding the median of two sorted arrays is a classic coding interview question. The challenge is to find the median efficiently, with a time complexity of O(log(min(m, n))), where m and n are the sizes of the two arrays. In this article, we’ll walk through a Java solution that employs binary search to achieve this efficiency.
Given two sorted arrays nums1 and nums2, find the median of the two sorted arrays. The overall runtime complexity should be O(log(min(m, n))), where m and n are the sizes of the two arrays.
To solve this problem, we use a binary search approach on the smaller of the two arrays. The goal is to partition both arrays such that the left half contains all elements less than or equal to the elements in the right half. Here’s a step-by-step explanation:
Here’s a detailed Java implementation of the solution:
public class MedianOfTwoSortedArrays { public double findMedianSortedArrays(int[] nums1, int[] nums2) { // Ensure nums1 is the smaller array if (nums1.length > nums2.length) { int[] temp = nums1; nums1 = nums2; nums2 = temp; } int x = nums1.length; int y = nums2.length; int low = 0, high = x; while (low <= high) { int partitionX = (low + high) / 2; int partitionY = (x + y + 1) / 2 - partitionX; // Edge cases int maxX = (partitionX == 0) ? Integer.MIN_VALUE : nums1[partitionX - 1]; int minX = (partitionX == x) ? Integer.MAX_VALUE : nums1[partitionX]; int maxY = (partitionY == 0) ? Integer.MIN_VALUE : nums2[partitionY - 1]; int minY = (partitionY == y) ? Integer.MAX_VALUE : nums2[partitionY]; if (maxX <= minY && maxY <= minX) { // Correct partition if ((x + y) % 2 == 0) { return (Math.max(maxX, maxY) + Math.min(minX, minY)) / 2.0; } else { return Math.max(maxX, maxY); } } else if (maxX > minY) { high = partitionX - 1; } else { low = partitionX + 1; } } throw new IllegalArgumentException("Input arrays are not sorted"); } public static void main(String[] args) { MedianOfTwoSortedArrays solution = new MedianOfTwoSortedArrays(); int[] nums1 = {1, 3}; int[] nums2 = {2}; System.out.println("Median: " + solution.findMedianSortedArrays(nums1, nums2)); // Output: 2.0 int[] nums1_2 = {1, 2}; int[] nums2_2 = {3, 4}; System.out.println("Median: " + solution.findMedianSortedArrays(nums1_2, nums2_2)); // Output: 2.5 } }
This binary search approach provides an efficient solution to finding the median of two sorted arrays. By leveraging binary search on the smaller array, the solution achieves a time complexity of O(log(min(m, n))), making it suitable for large input arrays.
The above is the detailed content of Finding the Median of Two Sorted Arrays in Java. For more information, please follow other related articles on the PHP Chinese website!