Artificial Intelligence (AI) has revolutionized trading by providing advanced tools to analyze large datasets and make predictions. This project demonstrates how to build a simple AI model for trading using historical price data.
These instructions will help you set up and run the AI trading model on your local machine.
python -m venv venv source venv/bin/activate # On Windows use `venv\Scripts\activate`
Obtain Historical Data:
Download historical trading data from a reliable source (e.g., Yahoo Finance, Alpha Vantage).
Data Preprocessing:
Clean and preprocess the data to remove any inconsistencies. Typical preprocessing steps include handling missing values, normalizing data, and feature engineering.
Example preprocessing script:
import pandas as pd from sklearn.preprocessing import MinMaxScaler # Load data data = pd.read_csv('historical_data.csv') # Handle missing values data = data.dropna() # Normalize data scaler = MinMaxScaler() data[['Open', 'High', 'Low', 'Close', 'Volume']] = scaler.fit_transform(data[['Open', 'High', 'Low', 'Close', 'Volume']]) # Save preprocessed data data.to_csv('preprocessed_data.csv', index=False)
Example model definition:
import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Dropout model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1))) model.add(Dropout(0.2)) model.add(LSTM(units=50, return_sequences=False)) model.add(Dropout(0.2)) model.add(Dense(units=1)) model.compile(optimizer='adam', loss='mean_squared_error')
from sklearn.model_selection import train_test_split X = data[['Open', 'High', 'Low', 'Close', 'Volume']].values y = data['Close'].values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model.fit(X_train, y_train, epochs=50, batch_size=32)
from sklearn.metrics import mean_squared_error predictions = model.predict(X_test) mse = mean_squared_error(y_test, predictions) print(f'Mean Squared Error: {mse}')
new_data = pd.read_csv('new_data.csv') new_data_scaled = scaler.transform(new_data) predictions = model.predict(new_data_scaled) print(predictions)
This project demonstrates how to build and evaluate an AI model for trading. By following the steps outlined in this README, you can create your own model to analyze and predict trading data.
The above is the detailed content of AI Trading Model. For more information, please follow other related articles on the PHP Chinese website!