Home Backend Development Golang Fanout-Fanin Pattern in Go

Fanout-Fanin Pattern in Go

Jul 29, 2024 am 06:32 AM

Fanout-Fanin Pattern in Go

In the previous 2 posts, we have looked at Fanout and Fanin separately. It is often the case that we use them together where we have a single data stream where we want to operate on the items individually and can do so safely using concurrency. So, we fanout into multiple worker threads then fanin back into a single stream.

For example, suppose you have a large log file. You could break the file into chunks, allowing each worker to operate on a different part of the file concurrently, then combine the results.

If you followed the previous two post, this pattern is obvious. See the links above if you're not sure.

// produce is simulating our single input as a channel
func produce() chan int {
    ch := make(chan int)
    go func() {
        for i := 0; i < 10; i++ {
            ch <- rand.Intn(50)
        }
        fmt.Printf("producer done\n")
        close(ch) // this is important!!!
    }()
    return ch
}

func worker(id int, jobs chan int, out chan OddEven, wg *sync.WaitGroup) {
    for value := range jobs {
        odd := "even"
        if (value & 1) == 1 {
            odd = "odd"
        }
        out <- OddEven{
            Number:  value,
            OddEven: odd,
        }
    }
    close(out) // remember this
    wg.Done()
}

// OddEven struct will be the result of the work done by each fanout thread
// and be the fanin data
type OddEven struct {
    Number  int
    OddEven string
}

func fanin(inputs []chan OddEven) chan OddEven {
    output := make(chan OddEven)

    var wg sync.WaitGroup
    for i, input := range inputs {
        wg.Add(1)
                // explicit params to capture loop vars
        go func(id int, input chan OddEven, output chan OddEven, wg *sync.WaitGroup) {
            for value := range input {
                output <- value
            }
            fmt.Printf("done merging source %d\n", id)
            wg.Done()
        }(i, input, output, &wg)
    }
    go func() {
        wg.Wait()
        close(output) // this is important!!!
    }()

    return output
}

func main() {
    // simulate the input data stream
    inputCh := produce()

    numWorkers := 3
    // fan-out to send data items to workers as individual jobs
    var wg sync.WaitGroup
    workerResults := make([]chan OddEven, numWorkers)
    for i := 0; i < numWorkers; i++ {
        wg.Add(1)
        workerResults[i] = make(chan OddEven)
        go worker(i, inputCh, workerResults[i], &wg)
    }
    go func() {
        wg.Wait()
    }()

    // fan-in the results
    results := fanin(workerResults)

    done := make(chan bool)
    go func() {
        for value := range results {
            fmt.Printf("got %d is %s\n", value.Number, value.OddEven)
        }
        close(done)
    }()
    <-done
    fmt.Println("done")
}
Copy after login

There is a produce() function that creates a simulated input stream of numbers.

There is a worker function that operates on an input channel until there is no more data. On each value it 'processes' the input data (determines if the value is odd or even), then sends a result struct to an output channel.

Note that when each worker is done, it closes its result channel. This is necessary to prevent deadlock since the fanin operation would otherwise sleep waiting for more data on the chan.

The main thread gets the input stream from produce, then launches a number of workers giving each worker its own channel where it will send its results.

These result channels are then sent to the fanin operation. To fanin, we create a channel to receive the output, then launch a goroutine for each of the worker channels. Each goroutine simply iterates over the channel until there is no more data then terminates. Remember that we closed the result channel in the worker thread, that is what allows the for loop to terminate

Note that we use a WaitGroup for the fanin process. This let's us know when all the results from all the result channels have been combined into the output channel. When this happen, we close the output channel so that whatever downstream thread consuming the output can terminate.

With all the data in the output channel, the main thread can go ahead and display the results. Note that we use a boolean channel to prevent the main thread from terminating until everything is done; otherwise, it will terminate the process.

Note that there is another way to do fan-in using a select statement. The technique used here is a little cleaner since we can increase or decrease the number of workers.

Note also that we have not addressed anything with regard to early termination from things like SIGTERM or SIGINT. That adds a little more complexity.

How would you implement this? There are other implementations of the fanout/fanin pattern. Please leave your comments and thoughts below?

Thanks!

The code for this post and all posts in this series can be found here

The above is the detailed content of Fanout-Fanin Pattern in Go. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1677
14
PHP Tutorial
1280
29
C# Tutorial
1257
24
Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Getting Started with Go: A Beginner's Guide Getting Started with Go: A Beginner's Guide Apr 26, 2025 am 12:21 AM

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. Python: The Pros and Cons Golang vs. Python: The Pros and Cons Apr 21, 2025 am 12:17 AM

Golangisidealforbuildingscalablesystemsduetoitsefficiencyandconcurrency,whilePythonexcelsinquickscriptinganddataanalysisduetoitssimplicityandvastecosystem.Golang'sdesignencouragesclean,readablecodeanditsgoroutinesenableefficientconcurrentoperations,t

See all articles