Home Backend Development Golang Controlling outgoing rate limit

Controlling outgoing rate limit

Jul 29, 2024 am 08:03 AM

Let's imagine a scenario that one has a distributed application that interacts with a third party API. Usually, third party APIs have a rate-limit control mechanism in order to avoid their clients from bursting requests and causing down-time on their services. In such a scenario, how can the caller control the rate of outgoing requests to the third party API in a distributed environment? This post discuss a possible strategy for this problem.

There a multiple algorithms to control the rate of requests, but here we'll focus on the token bucket algorithm, because it is relatively easy to understand and to implement. This algorithm states that: a bucket can hold a maximum of T tokens, and when an application wants to make a request to the third party API, it has to take 1 token from the bucket. If the bucket is empty, it has to wait until there is a least 1 token in the bucket. Also, the bucket is refilled with 1 token at a fixed rate of R tokens/milliseconds.

The token bucket algorithm is very straightforward to understand, but how can someone use it in a distributed environment to control the outgoing request to third party APIs?

If one wants to control the outgoing rate limit in a distributed environment, a centralized source of truth for the current rate limit is necessary. There are multiple ways to implement the source of truth and I've idealized the following diagram with a possible implementation:

Controlling outgoing rate limit

In the figure above, we have a distributed application in multiple pods, and each pod can make requests to a third party API. In the application infrastructure, there is a TCP server that controls the rate limit by using the token bucket algorithm. Before making a request to the third party API, the pod asks the TCP server for a new token, and the pod waits for a response from the TCP server until there is at least one available token. After a token is available, the pod makes the request to the third party API.

The TCP server implementation can be found in this repository https://github.com/rafaquelhodev/rlimit/ and in the next section I'll discuss briefly the token bucket implementation in golang.

Token bucket implementation

Below, I'm showing the main ideas behind the token bucket implementation. Please, take a look at the https://github.com/rafaquelhodev/rlimit/ repository to understand the detailed implementation.

The rate limit control is centralized in the TokenBucket struct:

type TokenBucket struct {
    id           string
    mu           sync.Mutex
    tokens       int64
    maxTokens    int64
    refillPeriod int64
    cron         chan bool
    subs         []chan bool
}
Copy after login

You can notice that there is a subs property in the TokenBucket struct. Basically, this is an array of subscribers for a specific token bucket: every time a token is requested from a client, the client is added to the subs array and the client is notified when a new token is added to the bucket.

When starting the bucket, we need to provide a maximum number of tokens the bucket can support (maxTokens) and the amount of time a token is added to the bucket (refillPeriod):

func newTokenBucket(id string, maxTokens int64, refillPeriod int64) *TokenBucket {
    bucket := &TokenBucket{
        id:           id,
        tokens:       0,
        maxTokens:    maxTokens,
        refillPeriod: refillPeriod,
        cron:         make(chan bool),
        subs:         make([]chan bool, 0),
    }
    fmt.Printf("refill period  = %d\n", refillPeriod)
    bucket.startCron()
    return bucket
}
Copy after login

Now, you might wonder, "how a token is added to bucket?". For that, when a bucket is created, a cron job is started, and at every refillPeriod milliseconds, a new token is added to the bucket:

func (tb *TokenBucket) startCron() {
    ticker := time.NewTicker(time.Duration(tb.refillPeriod) * time.Millisecond)

    go func() {
        for {
            select {
            case <-tb.cron:
                ticker.Stop()
                return
            case <-ticker.C:
                if tb.tokens < tb.maxTokens {
                    tb.tokens += 1
                    fmt.Printf("[TOKEN REFIL] | currTokens = %d\n", tb.tokens)

                    if len(tb.subs) > 0 {
                        sub := tb.subs[0]
                        tb.subs = tb.subs[1:]
                        sub <- true
                    }
                }
            }
        }
    }()
}
Copy after login

Finally, when a client wants a token from the bucket, the waitAvailable function must be called:

func (tb *TokenBucket) waitAvailable() bool {
    tb.mu.Lock()

    if tb.tokens > 0 {
        fmt.Printf("[CONSUMING TOKEN] - id = %s\n", tb.id)
        tb.tokens -= 1
        tb.mu.Unlock()
        return true
    }

    fmt.Printf("[WAITING TOKEN] - id %s\n", tb.id)

    ch := tb.tokenSubscribe()

    tb.mu.Unlock()

    <-ch

    fmt.Printf("[NEW TOKEN AVAILABLED] - id %s\n", tb.id)

    tb.tokens -= 1

    return true
}
Copy after login

Inspired by https://github.com/Mohamed-khattab/Token-bucket-rate-limiter

The above is the detailed content of Controlling outgoing rate limit. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1266
29
C# Tutorial
1239
24
Golang's Purpose: Building Efficient and Scalable Systems Golang's Purpose: Building Efficient and Scalable Systems Apr 09, 2025 pm 05:17 PM

Go language performs well in building efficient and scalable systems. Its advantages include: 1. High performance: compiled into machine code, fast running speed; 2. Concurrent programming: simplify multitasking through goroutines and channels; 3. Simplicity: concise syntax, reducing learning and maintenance costs; 4. Cross-platform: supports cross-platform compilation, easy deployment.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

See all articles