Natural language processing (NLP) is a fascinating field that combines linguistics and computing to understand, interpret, and manipulate human language. One of the most powerful tools for this is the Natural Language Toolkit (NLTK) in Python. In this text, we will explore the concepts of tokenization and the use of WordNet, a lexical base for the English language, which is widely used in NLP.
Tokenization is the process of dividing text into smaller units, called tokens. These tokens can be words, phrases, or even individual characters. Tokenization is a crucial step in text processing because it allows algorithms to understand and analyze text more effectively.
For example, consider the phrase "Hello, world!". Tokenizing this sentence can result in three tokens: ["Hello", "," "world", "!"]. This division allows each part of the text to be analyzed individually, facilitating tasks such as sentiment analysis, machine translation and named entity recognition.
In NLTK, tokenization can be done in several ways. Let's see some practical examples.
Dividing text into sentences is the first step in many NLP tasks. NLTK makes this easy with the sent_tokenize function.
import nltk from nltk.tokenize import sent_tokenize texto = "Olá mundo! Bem-vindo ao tutorial de NLTK. Vamos aprender a tokenizar textos." sentencas = sent_tokenize(texto, language='portuguese') print(sentencas)
The result will be:
['Olá mundo!', 'Bem-vindo ao tutorial de NLTK.', 'Vamos aprender a tokenizar textos.']
Here, the text was divided into three sentences. This is useful for more detailed analysis where each sentence can be processed individually.
After dividing the text into sentences, the next step is usually to divide these sentences into words. NLTK's word_tokenize function is used for this.
from nltk.tokenize import word_tokenize frase = "Olá mundo!" palavras = word_tokenize(frase, language='portuguese') print(palavras)
The result will be:
['Olá', 'mundo', '!']
Now we have each word and punctuation symbol as separate tokens. This is essential for tasks like word frequency analysis, where we need to count how many times each word appears in a text.
In some cases, you may want more personalized tokenization. Regular expressions (regex) are a powerful tool for this. NLTK provides the RegexpTokenizer class to create custom tokenizers.
from nltk.tokenize import RegexpTokenizer tokenizer = RegexpTokenizer(r'\w+') tokens = tokenizer.tokenize("Vamos aprender NLTK.") print(tokens)
The result will be:
['Vamos', 'aprender', 'NLTK']
Here, we use a regular expression that selects only words made up of alphanumeric characters, ignoring punctuation.
WordNet is a lexical database that groups words into sets of synonyms called synsets, provides short, general definitions, and records various semantic relationships between these words. In NLTK, WordNet is used to find synonyms, antonyms, hyponyms and hypernyms, among other relationships.
To use WordNet, we need to import the wordnet module from NLTK.
from nltk.corpus import wordnet
A synset, or set of synonyms, is a group of words that share the same meaning. To search for the synsets of a word, we use the synsets function.
sinonimos = wordnet.synsets("dog") print(sinonimos)
The result will be a list of synsets that represent different meanings of the word "dog".
[Synset('dog.n.01'), Synset('frump.n.01'), Synset('dog.n.03'), Synset('cad.n.01'), Synset('frank.n.02'), Synset('pawl.n.01'), Synset('andiron.n.01')]
Each synset is identified by a name that includes the word, the part of speech (n for noun, v for verb, etc.), and a number that distinguishes different senses.
We can get the definition and usage examples of a specific synset.
sinonimo = wordnet.synset('dog.n.01') print(sinonimo.definition()) print(sinonimo.examples())
The result will be:
a domesticated carnivorous mammal (Canis familiaris) that typically has a long snout, an acute sense of smell, non-retractile claws, and a barking, howling, or whining voice ['the dog barked all night']
This gives us a clear understanding of the meaning and use of "dog" in this context.
To find synonyms and antonyms of a word, we can explore synset lemmas.
sinonimos = [] antonimos = [] for syn in wordnet.synsets("good"): for lemma in syn.lemmas(): sinonimos.append(lemma.name()) if lemma.antonyms(): antonimos.append(lemma.antonyms()[0].name()) print(set(sinonimos)) print(set(antonimos))
The result will be a list of synonyms and antonyms for the word "good".
{'skillful', 'proficient', 'practiced', 'unspoiled', 'goodness', 'good', 'dependable', 'sound', 'right', 'safe', 'respectable', 'effective', 'trade_good', 'adept', 'good', 'full', 'commodity', 'estimable', 'honorable', 'undecomposed', 'serious', 'secure', 'dear', 'ripe'} {'evilness', 'evil', 'ill'}
WordNet also allows you to calculate the semantic similarity between words. Similarity is based on the distance between synsets in the hyponym/hypernym graph.
from nltk.corpus import wordnet cachorro = wordnet.synset('dog.n.01') gato = wordnet.synset('cat.n.01') similaridade = cachorro.wup_similarity(gato) print(similaridade)
The result will be a similarity value between 0 and 1.
0.8571428571428571
This value indicates that "dog" and "cat" are quite similar semantically.
Stopwords são palavras comuns que geralmente não adicionam muito significado ao texto, como "e", "a", "de". Remover essas palavras pode ajudar a focar nas partes mais importantes do texto. O NLTK fornece uma lista de stopwords para várias línguas.
from nltk.corpus import stopwords stop_words = set(stopwords.words('portuguese')) palavras = ["Olá", "mundo", "é", "um", "lugar", "bonito"] palavras_filtradas = [w for w in palavras if not w in stop_words] print(palavras_filtradas)
O resultado será:
['Olá', 'mundo', 'lugar', 'bonito']
Aqui, as stopwords foram removidas da lista original de palavras.
A análise de sentimentos é uma aplicação comum de PLN onde o objetivo é determinar a opinião ou emoção expressa em um texto. Tokenização e o uso de WordNet são passos importantes nesse processo.
Primeiro, dividimos o texto em palavras e removemos as stopwords. Em seguida, podemos usar os synsets para entender melhor o contexto e a polaridade das palavras.
texto = "Eu amo programação em Python!" palavras = word_tokenize(texto, language='portuguese') palavras_filtradas = [w for w in palavras if not w in stop_words] polaridade = 0 for palavra in palavras_filtradas: synsets = wordnet.synsets(palavra, lang='por') if synsets: for syn in synsets: polaridade += syn.pos_score() - syn.neg_score() print("Polaridade do texto:", polaridade)
Nesse exemplo simplificado, estamos somando os scores positivos e negativos dos synsets das palavras filtradas para determinar a polaridade geral do texto.
Outra aplicação é o reconhecimento de entidades nomeadas (NER), que identifica e classifica nomes de pessoas, organizações, locais, etc., em um texto.
import nltk nltk.download('maxent_ne_chunker') nltk.download('words') frase = "Barack Obama foi o 44º presidente dos Estados Unidos." palavras = word_tokenize(frase, language='portuguese') tags = nltk.pos_tag(palavras) entidades = nltk.ne_chunk(tags) print(entidades)
O resultado será uma árvore que identifica "Barack Obama" como uma pessoa e "Estados Unidos" como um local.
Neste texto, exploramos os conceitos básicos de tokenização e uso do WordNet com a biblioteca NLTK em Python. Vimos como dividir textos em sentenças e palavras, como buscar sinônimos e antônimos, calcular similaridades semânticas, e aplicações práticas como análise de sentimentos e reconhecimento de entidades nomeadas. A NLTK é uma ferramenta poderosa para qualquer pessoa interessada em processamento de linguagem natural, oferecendo uma ampla gama de funcionalidades para transformar e analisar textos de forma eficaz.
The above is the detailed content of Introduction to Tokenization and WordNet Basics with Python and NLTK. For more information, please follow other related articles on the PHP Chinese website!