Editor | Radish Skin
A cell is like a computer, receiving, analyzing and processing different information from the environment every second: external information is transmitted through highly parallel signals in the cell It analyzes and processes the guidance pathway, and then reads information (gene expression) or writes instructions (DNA modification and editing) from the "storage device" (i.e., DNA) in a predefined way to guide itself or surrounding cells to respond to environmental information. respond.
For a long time, how to effectively utilize the computing power of organisms themselves, transform organisms to perform computing tasks given by humans, and thereby develop new concept computers based on biological systems are all aspects of computer science and biology. Hot issues in cross-integration of technical fields.
Recently, researchers from the National University of Defense Technology, West Lake University, Zhejiang University and Zhijiang Laboratory jointly proposed a design method called TriLoS, which achieves efficient design of combinatorial logic circuits in cells through multi-layer gene expression regulation networks and construction, making it possible to develop biological computing components that perform combinatorial logic operations in a modular manner.
The research, titled "Multi-layered computational gene networks by engineered tristate logics", was published online in the magazine "Cell" on July 31, 2024.
Learning from the cell itself to design the logical unit of the cell
Inside the cell The expression of a single gene can be understood as being in one of two states: active (i.e., expressed) or inactive (i.e., not expressed), which allows us to abstract "on/off" or "0/1" from gene expression. the concept of.
From this perspective, a cell can be understood as a digital circuit composed of combinational logic and sequential logic. The basis for designing and transforming this circuit is naturally to create "transistors" and "logic gates" suitable for cells. ”.
Since the beginning of this century, synthetic biologists have been trying to develop biological components with logical computing functions by designing artificial gene circuits that control gene expression.
However, due to the lack of theoretical system guidance, the complexity of cellular gene regulation itself, and the insufficiency of available gene regulation methods, existing component design still relies largely on the designer’s experience and trial and error, which seriously restricts this technology. development of the field.
By analyzing the hierarchical structure of intracellular gene expression regulation, this study found that intracellular gene expression is regulated at different levels such as transcription and translation. The basic unit of this regulatory process can be abstracted into a structure similar to a three-state gate in an electronic circuit. .
For example, in the process of DNA being transcribed and translated to the final protein, transcriptional regulation (B) can be regarded as the upstream control pathway of translational regulation (A). The turning on or off of transcriptional regulation will cause the translational regulation system to eventually produce three states: 0 (off), 1 (on) or Z (high resistance state, that is, the translation system-related regulatory elements do not undergo transcription).
Researchers realized that such a three-state gate structure can be used as a basic logical unit to construct a multi-layer gene expression regulation network. Through the assembly of multi-layer three-state gate units, different levels of regulation such as intracellular DNA editing, transcription, and translation can be achieved. Make full use of the process to build more complex and robust combinational logic devices (Figure 1).
Under the guidance of this idea, researchers began to try to use the transcription and translation processes to realize "three-state gate" gene circuits in mammalian cells.
By using the transcriptional regulatory switch regulated by Vanillic acid (VA, input B) as the "upstream" gene switch to control the protein translation switch regulated by Grazoprevir (Gra, input A), the researchers successfully constructed BUFIF1, NOTIF1, BUFIF0 and NOTIF0 Four basic logic units and have demonstrated good performance in cells (Figure 2).
Compared with the traditional logic gene circuit design method, the design method of logic unit based on "tri-state gate" shows stronger modularity and better scalability. For example, for the problems that have always troubled synthetic biology Using the scientist’s exclusive OR logic (XOR), researchers can efficiently implement it by simply combining NOTIF1 and BUFIF0 (Figure 3).
Idea bernama TriLoS ini meningkatkan dengan ketara "ruang boleh disunting" sel mamalia, meletakkan asas yang kukuh untuk reka bentuk komponen pengkomputeran biologi yang lebih cekap dan menembusi had pengkomputeran sel.
Mereka bentuk dan memasang komponen biokomputer berdasarkan unit logik piawai
Berdasarkan pembinaan unit logik piawai, penyelidikan ini menjelaskan lagi prinsip kejuruteraan menggunakan unit logik piawai untuk membina peranti logik gabungan yang kompleks.
Berbeza dengan penebat ketat antara litar elektronik yang berbeza dalam reka bentuk litar elektronik, terdapat pelbagai interaksi yang kompleks dan pelbagai masalah penebat dalam proses pengawalseliaan dalam sel Ia adalah perlu untuk menjelaskan hubungan yang betul antara kekangan persilangan adalah a ciri khas mereka bentuk komponen pengkomputeran biologi.
Sebagai tindak balas kepada masalah ini, kajian ini menjalankan perbincangan terperinci tentang kekangan ortogonal dalam proses reka bentuk rangkaian pengkomputeran genetik berbilang lapisan dari dua perspektif iaitu mengembangkan bilangan isyarat keluaran dan mengembangkan bilangan isyarat input.
Dari segi memperluaskan bilangan isyarat keluaran, penyelidik menganalisis dan mencadangkan bahawa rangkaian pengawalseliaan gen berbilang lapisan yang mengawal isyarat keluaran yang berbeza mesti memilih elemen pengawalseliaan peringkat bawah yang saling ortogon/tertebat, manakala proses pengawalseliaan peringkat lebih tinggi boleh berkongsi elemen pengawalseliaan .
Untuk memenuhi kekangan ini, para penyelidik mereka bentuk satu lagi set suis pengawalseliaan Grazoprevir ortogonal sepenuhnya. Reka bentuk ini menyepadukan elemen gen dimerik atau saling eksklusif NS3a(H1)/GNCR1 (dimerik) atau ANR/GNCR1 (saling eksklusif) yang disebabkan oleh Grazoprevir ke dalam rangka kerja pengawalseliaan gen GEMS sintetik. Kehadiran Gra akan menyebabkan bahagian penerima isyarat ekstramembran pada reseptor saling serasi atau menghalau, dengan itu mengawal hidup atau mati suis gen eksogen melalui laluan isyarat JAK/STAT3 intraselular.
Data menunjukkan bahawa menggabungkan suis ini dengan suis kawalan transkrip yang dikawal oleh asid Vanillic juga boleh membina unit logik asas yang beroperasi secara stabil dalam sel, dan separuh penambah dan separuh penola dengan dua output boleh direka dan dibina melalui TriLoS peranti logik (Rajah 4).
Dari segi memperluaskan bilangan isyarat input, penyelidik telah menumpukan perhatian mereka kepada peraturan ekspresi gen huluan peraturan transkrip, dan telah mencadangkan kaedah untuk menggunakan isyarat input ortogon kepada isyarat hiliran untuk mengawal selia penyuntingan gen dan kebolehcapaian kromatin isyarat.
Untuk menunjukkan kebolehlaksanaan idea ini, penyelidik menggunakan Cre recombinase, yang mengawal proses penggabungan semula gen, sebagai input ketiga untuk membina rangkaian pengawalan gen dengan struktur pengawalseliaan tiga lapisan peraturan jujukan gen, peraturan transkripsi dan peraturan terjemahan , yang mudah Penambah penuh dan penolakan penuh dengan 3 input dan 2 output dilaksanakan di atas tanah (Rajah 5).
Hasil ini berjaya menembusi "siling" reka bentuk litar gen logik dalam pembinaan penambah penuh sel tunggal dan penolakan penuh, seterusnya menunjukkan kecekapan dan keberkesanan TriLoS dalam proses membina rangkaian pengkomputeran logik yang kompleks.
Terokai kemungkinan tak terhingga biokomputer
Sejak konsep biokomputer dicadangkan, saintis telah komited untuk mencari senario aplikasi yang menunjukkan kelebihan sistem biokomputer "Apakah kegunaan biokomputer ini?" .
Dalam kajian ini, penyelidik memberikan jawapan mereka sendiri kepada soalan ini, iaitu menggunakan pengkomputeran sel untuk membangunkan "sel pintar" yang mengintegrasikan diagnosis dan rawatan dalam senario seperti rawatan penyakit yang tepat, supaya mereka boleh menentukan secara bebas punca penyakit itu. Jenis penyakit boleh digunakan untuk membimbing pengeluaran protein terapeutik yang sesuai dan dengan lebih tepat mencapai rawatan berperingkat, hierarki dan tersuai bagi penyakit tersebut.
Kajian ini menunjukkan potensi senario aplikasi biokomputer menggunakan diabetes sebagai contoh. Demi kesederhanaan, para penyelidik secara buatan membahagikan diabetes kepada tiga keadaan/jenis: obesiti, diabetes jenis 2, dan diabetes jenis 1 berdasarkan keparahan dan patogenesisnya, dan merumuskan dua ubat rawatan berdasarkan ciri setiap jenis: kanser pankreas. Pilihan rawatan peptida 1 (GLP-1) atau insulin (INS) seperti glukagon.
Dengan bantuan TriLoS, penyelidik telah membangunkan "sel pintar" yang boleh memberikan kombinasi ubat terapeutik yang berbeza untuk input yang berbeza Mereka boleh menyesuaikan pengeluaran ubat terapeutik mengikut keadaan penyakit tanpa menggantikan sel yang ditanam, dan boleh mencapai ini. dalam sel dan tikus rawatan ketepatan penyesuaian penyakit (Rajah 6).
Kajian ini mencadangkan buat pertama kalinya strategi reka bentuk rangkaian pengkomputeran selular berbilang lapisan (TriLoS) berdasarkan litar genetik "gerbang tiga keadaan" sebagai unit logik asas, yang menyediakan teori asas untuk reka bentuk pengkomputeran selular yang lebih kompleks peranti dan menyelesaikan masalah pada tahap tertentu Dalam penyelidikan sedia ada, corak reka bentuk yang hanya boleh direka secara membuta tuli dan melalui percubaan dan kesilapan melalui pengalaman juga telah meletakkan asas yang kukuh untuk pembangunan alat reka bentuk automatik.
Penyelidikan ini telah disiapkan oleh Universiti Teknologi Pertahanan Nasional dengan kerjasama Universiti Tasik Barat, Universiti Zhejiang, dan Makmal Zhijiang Antaranya, penyelidik Shao Jiawei dari Universiti Zhejiang, penolong penyelidik Qiu Xinyuan dari Universiti Teknologi Pertahanan Nasional, dan. calon kedoktoran Universiti Tasik Barat/bekas pakar kejuruteraan Zhijiang Laboratory Li Hangwei Penulis pertama kertas kerja Shao Jiawei dari Universiti Zhejiang, profesor Zhu Lingyun dari Universiti Teknologi Pertahanan Nasional, pakar penyelidikan Wang Hui dari Makmal Zhijiang, dan penyelidik Xie Mingqi dari West Lake University adalah pengarang yang sepadan.
Nota: Sampul yang dihasilkan oleh Midjourney.
The above is the detailed content of How do you get cells to do calculations? Four domestic universities proposed a new method for designing biological computing components and were listed in Cell. For more information, please follow other related articles on the PHP Chinese website!