


Create the fastest and precise invoice data extractor for structural output using AI
Using LlamaExtract with Pydantic Models for Shop Receipts Extraction
In this article, we'll explore how to use LlamaExtract incorporated with schemas from Pydantic models inorder to extract structured data from shop receipts. This approach helps in organizing receipt information systematically, making it easier to analyze and manage.
Setup
First, ensure you have the llama-extract client library installed. Use the following command:
pip install llama-extract pydantic
Note: If you see a notice about updating pip, you may update it using the command provided.
First, login and get an api-key for free from Llama Index Cloud
Set up the environment variable for your LlamaExtract API key:
import os os.environ["LLAMA_CLOUD_API_KEY"] = "YOUR LLAMA INDEX CLOUD API HERE"
Load Data
For this example, let's assume we have a dataset of shop receipts in PDF format. Place these files in a directory named receipts.
DATA_DIR = "data/receipts" fnames = os.listdir(DATA_DIR) fnames = [fname for fname in fnames if fname.endswith(".pdf")] fpaths = [os.path.join(DATA_DIR, fname) for fname in fnames] fpaths
The output should list the file paths of the receipts:
['data/receipts/receipt.pdf']
Define a Pydantic Model
We'll define our data model using Pydantic, this would tell the API which fields/data we are expecting or want to extract from the PDF. For shop receipts, we might be interested in extracting the store name, date, total amount, and list of items purchased.
from pydantic import BaseModel from typing import List class Item(BaseModel): name: str quantity: int price: float class Receipt(BaseModel): store_name: str date: str total_amount: float items: List[Item]
Create Schema
Now, we can use the Pydantic model to define an extraction schema in LlamaExtract.
from llama_extract import LlamaExtract extractor = LlamaExtract(verbose=True) schema_response = await extractor.acreate_schema("Receipt Schema", data_schema=Receipt) schema_response.data_schema
The output schema should resemble the following:
{ 'type': 'object', '$defs': { 'Item': { 'type': 'object', 'title': 'Item', 'required': ['name', 'quantity', 'price'], 'properties': { 'name': {'type': 'string', 'title': 'Name'}, 'quantity': {'type': 'integer', 'title': 'Quantity'}, 'price': {'type': 'number', 'title': 'Price'} } } }, 'title': 'Receipt', 'required': ['store_name', 'date', 'total_amount', 'items'], 'properties': { 'store_name': {'type': 'string', 'title': 'Store Name'}, 'date': {'type': 'string', 'title': 'Date'}, 'total_amount': {'type': 'number', 'title': 'Total Amount'}, 'items': { 'type': 'array', 'title': 'Items', 'items': {'$ref': '#/$defs/Item'} } } }
Run Extraction
With the schema defined, we can now extract structured data from our receipt files. By specifying Receipt as the response model, we ensure the extracted data is validated and structured.
responses = await extractor.aextract( schema_response.id, fpaths, response_model=Receipt )
You can access the raw JSON output if needed:
data = responses[0].data print(data)
Example JSON output:
{ 'store_name': 'ABC Electronics', 'date': '2024-08-05', 'total_amount': 123.45, 'items': [ {'name': 'Laptop', 'quantity': 1, 'price': 999.99}, {'name': 'Mouse', 'quantity': 1, 'price': 25.00}, {'name': 'Keyboard', 'quantity': 1, 'price': 50.00} ] }
Conclusion
In this article, we demonstrated how to use LlamaExtract with Pydantic models for defining data schemas and extract structured data from shop receipts. This approach ensures that the extracted information is well-organized and validated, making it easier to handle and analyze.
This can also be use for many cases, invoices, receipts, reports etc.
Happy Coding!!
Do you have a project ? that you want me to assist you email me??: wilbertmisingo@gmail.com
Have a question or wanna be the first to know about my posts:-
Follow ✅ me on LinkedIn ?
Follow ✅ me on Twitter/X ?
The above is the detailed content of Create the fastest and precise invoice data extractor for structural output using AI. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
