To this day, the structural detail and precision determined by crystallography, from simple metals to large membrane proteins, are unmatched by any other method. However, the biggest challenge, the so-called phase problem, remains retrieving phase information from experimentally determined amplitudes.
Researchers at the University of Copenhagen, Denmark, have developed a deep learning method called PhAI to solve crystal phase problems. A deep learning neural network trained using millions of artificial crystal structures and their corresponding synthetic diffraction data can generate accurate electron density maps. .
Research shows that this deep learning-based ab initio structure solution method can solve the phase problem at a resolution of only 2 Angstroms, which is equivalent to only 10% to 20% of the available data at atomic resolution, while traditional Ab initio methods typically require atomic resolution.
Relevant research was titled "PhAI: A deep-learning approach to solve the crystallographic phase problem" and was published in "Science" on August 1.
Paper link: https://www.science.org/doi/10.1126/science.adn2777Crystallography is one of the core analytical techniques in natural sciences. X-ray crystallography provides a unique view into the three-dimensional structure of crystals.
In order to reconstruct the electron density map, enough complex structure factors $F$ of the diffraction reflections must be known. In a traditional experiment, only the amplitude $|F|$ is obtained, while the phase $phi$ is lost. This is a crystallographic phase problem.
Illustration: Standard crystal structure determination flow chart. (Source: Paper)A major breakthrough came in the 1950s and 1960s, when Karle and Hauptmann** developed so-called direct methods for solving phase problems. But the direct method requires atomic resolution diffraction data. However, the requirement of atomic resolution is an empirical observation.
In recent years, traditional direct methods have been supplemented by dual space methods. The currently available ab initio methods appear to have reached their limits. A general solution to the phase problem remains unknown.
Mathematically speaking, any combination of structure factor amplitude and phase can be subjected to an inverse Fourier transform. However, physical and chemical requirements (such as having an atomically-like electron density distribution) impose rules on the possible combinations of phases consistent with a set of amplitudes. Advances in deep learning allow one to explore this relationship, perhaps in greater depth than current ab initio methods.
Here, researchers from the University of Copenhagen took a data-driven approach, using millions of artificial crystal structures and their corresponding diffraction data, aiming to solve phase problems in crystallography.
Study shows that this deep learning based ab initio structure solution method can be performed at a resolution of only minimum lattice plane distance (dmin) = 2.0 Å using only the data required by the direct method 10% to 20%.
Neural Network Design and Training
The artificial neural network constructed is called PhAI, which accepts the structure factor amplitude |F| and outputs the corresponding phase value ϕ. The architecture of PhAI is shown in the figure below.
Illustration: PhAI neural network method solves the phase problem. (Source: Paper) The number of structure factors in a crystal structure depends on the unit cell size. Depending on the computing resources, limits are placed on the size of the input data. The input structure factor amplitudes are chosen based on the Miller indices (h, k, l) obeying the 1. reflection.Rangkaian saraf terlatih berfungsi dengan baik Ia boleh menyelesaikan semua struktur yang diuji (N = 2387) jika data pembelauan yang sepadan mempunyai resolusi yang baik, dan ia lebih baik dalam menyelesaikan struktur daripada resolusi rendah data Prestasi cemerlang. Walaupun rangkaian saraf jarang dilatih mengenai struktur bukan organik, ia boleh menyelesaikan struktur sedemikian dengan sempurna.
Kaedah cas flip berfungsi dengan baik semasa memproses data resolusi tinggi, tetapi keupayaannya untuk menghasilkan penyelesaian yang munasabah betul berkurangan secara beransur-ansur apabila resolusi data berkurangan, bagaimanapun, ia masih menyelesaikan kira-kira 32 piksel pada resolusi 1.6Å % Struktur. Bilangan struktur yang dikenal pasti dengan membalikkan cas boleh dipertingkatkan dengan percubaan selanjutnya dan menukar parameter input seperti ambang membalik.
Dalam pendekatan PhAI, Pengoptimuman meta ini dilakukan semasa latihan dan tidak perlu dilakukan oleh pengguna. Keputusan ini menunjukkan bahawa tanggapan umum dalam kristalografi bahawa data resolusi atom diperlukan untuk mengira fasa ab initio mungkin rosak. PhAI hanya memerlukan 10% hingga 20% data resolusi atom.
Hasil ini jelas menunjukkan bahawa resolusi atom tidak diperlukan untuk kaedah ab initio dan membuka jalan baharu untuk penentuan struktur berasaskan pembelajaran mendalam.
Cabaran pendekatan pembelajaran mendalam ini adalah untuk menskalakan rangkaian saraf, iaitu, data pembelauan untuk sel unit yang lebih besar akan memerlukan sejumlah besar data input dan output serta kos pengiraan semasa latihan. Pada masa hadapan, kajian lanjut diperlukan untuk melanjutkan kaedah ini kepada kes umum.
The above is the detailed content of Training with millions of crystal data to solve the crystallographic phase problem, the deep learning method PhAI is published in Science. For more information, please follow other related articles on the PHP Chinese website!