Home > Web Front-end > JS Tutorial > Adding GenAI to Angular Application Using AWS Bedrock

Adding GenAI to Angular Application Using AWS Bedrock

PHPz
Release: 2024-08-09 02:32:22
Original
828 people have browsed it

Adding GenAI to Angular Application Using AWS Bedrock

Integrating AI into web applications has become increasingly prevalent. AWS Bedrock offers a powerful platform to access and leverage foundation models (FMs) for building generative AI applications. This article will guide you through incorporating AI capabilities into your Angular application using AWS Bedrock.

Prerequisites

  • Basic understanding of Angular and TypeScript.
  • AWS account with necessary permissions.
  • Node.js and npm (or yarn) installed.
  • An Angular project set up.

Step-by-Step Guide

This article will guide you through incorporating AI capabilities into your Angular application using AWS Bedrock.

1. Setting Up AWS Bedrock

  • Create an AWS account: If you don’t have one, create an AWS account.
  • Set up IAM roles: Create IAM roles with necessary permissions to access AWS Bedrock and other required services.
  • Choose a foundation model: AWS Bedrock offers a variety of foundation models from different providers. Select the model that best suits your application’s requirements.

2. Creating an AWS Lambda Function

  • Create a new Lambda function: Use the AWS Management Console or the AWS CLI to create a new Lambda function.
  • Choose Node.js runtime: Select Node.js as the runtime for your function.
  • Write the Lambda function code: This code will interact with the AWS Bedrock API to send prompts and receive responses.
const AWS = require('aws-sdk');

const bedrockClient = new AWS.Bedrock({ region: 'us-east-1' }); // Replace with your region

exports.handler = async (event) => {
  const prompt = event.prompt;

  const params = {
    modelId: 'YOUR_MODEL_ID', // Replace with your model ID
    inputText: prompt
  };

  try {
    const response = await bedrockClient.generateText(params).promise();
    return response.text;
  } catch (error) {
    console.error(error);
    throw error;
  }
};
Copy after login
  • Configure the function: Set the appropriate IAM role and environment variables.

3. Creating an Angular Service

Generate a new Angular service: Use the Angular CLI to create a new service to handle interactions with the Lambda function.

ng generate service bedrock
Copy after login
  • Inject HttpClient: Inject the HttpClient to make HTTP requests to the Lambda function.
  • Create a method to call the Lambda function: This method will send the prompt to the Lambda function and return the response.
import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

@Injectable({
  providedIn: 'root'
})
export class BedrockService {
  constructor(private http: HttpClient) {}

  generateText(prompt: string) {
    return this.http.post<string>('https://your-lambda-function-endpoint', { prompt });
  }
}
Copy after login

4. Integrating AI into Your Angular Component

  • Import the Bedrock service: Import the Bedrock service into your component.
  • Create a form or input field: Allow users to input text as a prompt.
  • Call the Bedrock service: When a user submits the prompt, call the Bedrock service to generate text.
  • Display the generated text: Display the generated text in your component’s view.
import { Component } from '@angular/core';
import { BedrockService } from './bedrock.service';

@Component({
  selector: 'app-my-component',
  templateUrl: './my-component.component.html',
  styleUrls: ['./my-component.component.css']
})
export class MyComponent {
  prompt: string = '';
  generatedText: string = '';

  constructor(private bedrockService: BedrockService) {}

  generate() {
    this.bedrockService.generateText(this.prompt)
      .subscribe(text => {
        this.generatedText = text;
      });
  }
}
Copy after login

Conclusion:

By following these steps, you can successfully integrate AI capabilities into your Angular application using AWS Bedrock. This integration can enhance user experiences, automate tasks, and unlock new possibilities for your application.

Note: Replace placeholders like YOUR_MODEL_ID and https://your-lambda-function-endpoint with actual values.

The above is the detailed content of Adding GenAI to Angular Application Using AWS Bedrock. For more information, please follow other related articles on the PHP Chinese website!

source:dev.to
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template