Home Backend Development Python Tutorial BigQuery and XGBoost Integration: A Jupyter Notebook Tutorial for Binary Classification

BigQuery and XGBoost Integration: A Jupyter Notebook Tutorial for Binary Classification

Aug 12, 2024 pm 06:51 PM

BigQuery and XGBoost Integration: A Jupyter Notebook Tutorial for Binary Classification

Introduction

In selecting a binary classification model for tabular data, I decided to quickly try out a fast, non-deep learning model: Gradient Boosting Decision Trees (GBDT). This article describes the process of creating a Jupyter Notebook script using BigQuery as the data source and the XGBoost algorithm for modeling.

Complete Script

For those who prefer to jump straight into the script without the explanation, here it is. Please adjust the project_name, dataset_name, and table_name to fit your project.

import xgboost as xgb
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import precision_score, recall_score, f1_score, log_loss
from google.cloud import bigquery

# Function to load data from BigQuery
def load_data_from_bigquery(query):
    client = bigquery.Client()
    query_job = client.query(query)
    df = query_job.to_dataframe()
    return df

def compute_metrics(labels, predictions, prediction_probs):
    precision = precision_score(labels, predictions, average='macro')
    recall = recall_score(labels, predictions, average='macro')
    f1 = f1_score(labels, predictions, average='macro')
    loss = log_loss(labels, prediction_probs)
    return {
        'precision': precision,
        'recall': recall,
        'f1': f1,
        'loss': loss
    }

# Query in BigQuery
query = """
SELECT *
FROM `<project_name>.<dataset_name>.<table_name>`
"""

# Loading data
df = load_data_from_bigquery(query)

# Target data
y = df["reaction"]

# Input data
X = df.drop(columns=["reaction"], axis=1)

# Splitting data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=1)

# Training the XGBoost model
model = xgb.XGBClassifier(eval_metric='logloss')

# Setting the parameter grid
param_grid = {
    'max_depth': [3, 4, 5],
    'learning_rate': [0.01, 0.1, 0.2],
    'n_estimators': [100, 200, 300],
    'subsample': [0.8, 0.9, 1.0]
}

# Initializing GridSearchCV
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, scoring='accuracy', verbose=1, n_jobs=-1)

# Executing the grid search
grid_search.fit(X_train, y_train)

# Displaying the best parameters
print("Best parameters:", grid_search.best_params_)

# Model with the best parameters
best_model = grid_search.best_estimator_

# Predictions on validation data
val_predictions = best_model.predict(X_val)
val_prediction_probs = best_model.predict_proba(X_val)

# Predictions on training data
train_predictions = best_model.predict(X_train)
train_prediction_probs = best_model.predict_proba(X_train)

# Evaluating the model (validation data)
val_metrics = compute_metrics(y_val, val_predictions, val_prediction_probs)
print("Optimized Validation Metrics:", val_metrics)

# Evaluating the model (training data)
train_metrics = compute_metrics(y_train, train_predictions, train_prediction_probs)
print("Optimized Training Metrics:", train_metrics)
Copy after login

Explanation

Loading Data from BigQuery

Previously, data was stored in Cloud Storage as CSV files, but the slow data loading was reducing the efficiency of our learning processes, prompting the shift to BigQuery for faster data handling.

Setting Up the BigQuery Client

from google.cloud import bigquery
client = bigquery.Client()
Copy after login

This code initializes a BigQuery client using Google Cloud credentials, which can be set up through environment variables or the Google Cloud SDK.

Querying and Loading Data

def load_data_from_bigquery(query):
    query_job = client.query(query)
    df = query_job.to_dataframe()
    return df
Copy after login

This function executes an SQL query and returns the results as a DataFrame in Pandas, allowing for efficient data processing.

Training the Model with XGBoost

XGBoost is a high-performance machine learning algorithm utilizing gradient boosting, widely used for classification and regression problems.

https://arxiv.org/pdf/1603.02754

Model Initialization

import xgboost as xgb
model = xgb.XGBClassifier(eval_metric='logloss')
Copy after login

Here, the XGBClassifier class is instantiated, using log loss as the evaluation metric.

Data Splitting

from sklearn.model_selection import train_test_split
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=1)
Copy after login

This function splits the data into training and validation sets, which is crucial for testing the model's performance and avoiding overfitting.

Parameter Optimization

from sklearn.model_selection import GridSearchCV
param_grid = {
    'max_depth': [3, 4, 5],
    'learning_rate': [0.01, 0.1, 0.2],
    'n_estimators': [100, 200, 300],
    'subsample': [0.8, 0.9, 1.0]
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=3, scoring='accuracy', verbose=1, n_jobs=-1)
grid_search.fit(X_train, y_train)
Copy after login

GridSearchCV performs cross-validation to find the best combination of parameters for the model.

Model Evaluation

The performance of the model is evaluated using precision, recall, F1 score, and log loss on the validation dataset.

def compute_metrics(labels, predictions, prediction_probs):
    from sklearn.metrics import precision_score, recall_score, f1_score, log_loss
    return {
        'precision': precision_score(labels, predictions, average='macro'),
        'recall': recall_score(labels, predictions, average='macro'),
        'f1': f1_score(labels, predictions, average='macro'),
        'loss': log_loss(labels, prediction_probs)
    }
val_metrics = compute_metrics(y_val, val_predictions, val_prediction_probs)
print("Optimized Validation Metrics:", val_metrics)
Copy after login

Output Results

When you run the notebook, you will get the following output showing the best parameters and the model evaluation metrics.

Best parameters: {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 300, 'subsample': 0.9}
Optimized Validation Metrics: {'precision': 0.8919952583956949, 'recall': 0.753797304483842, 'f1': 0.8078981867164722, 'loss': 0.014006406471894417}
Optimized Training Metrics: {'precision': 0.8969556573175115, 'recall': 0.7681976753444204, 'f1': 0.8199353049298048, 'loss': 0.012475375680566196}
Copy after login

Additional Information

Using Google Cloud Storage as a Data Source

In some cases, it may be more appropriate to load data from Google Cloud Storage rather than BigQuery. The following function reads a CSV file from Cloud Storage and returns it as a DataFrame in Pandas, and can be used interchangeably with the load_data_from_bigquery function.

from google.cloud import storage

def load_data_from_gcs(bucket_name, file_path):
    client = storage.Client()
    bucket = client.get_bucket(bucket_name)
    blob = bucket.blob(file_path)
    data = blob.download_as_text()
    df = pd.read_csv(io.StringIO(data), encoding='utf-8')
    return df
Copy after login

Example of use:

bucket_name = '<bucket-name>'
file_path = '<file-path>'

df = load_data_from_gcs(bucket_name, file_path)
Copy after login

Training a Model with LightGBM

If you want to use LightGBM instead of XGBoost, you can simply replace the XGBClassifier with LGBMClassifier in the same setup.

import lightgbm as lgb
model = lgb.LGBMClassifier()
Copy after login

Conclusion

Future articles will cover the use of BigQuery ML (BQML) for training.

The above is the detailed content of BigQuery and XGBoost Integration: A Jupyter Notebook Tutorial for Binary Classification. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1242
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

See all articles