? Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, ? Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.
? Diffusers offers three core components:
We recommend installing ? Diffusers in a virtual environment from PyPI or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
With pip (official…
https://blackforestlabs.ai/announcing-black-forest-labs/
python3 -m venv fluxtest source fluxtest/bin/activate
https://huggingface.co/docs/huggingface_hub/main/en/guides/cli
pip install -U "huggingface_hub[cli]" huggingface-cli login
pip install torch==2.3.1 pip install git+https://github.com/huggingface/diffusers.git pip install transformers==4.43.3 sentencepiece==0.2.0 accelerate==0.33.0 protobuf==5
image.py
import torch from diffusers import FluxPipeline import diffusers _flux_rope = diffusers.models.transformers.transformer_flux.rope def new_flux_rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: assert dim % 2 == 0, "The dimension must be even." if pos.device.type == "mps": return _flux_rope(pos.to("cpu"), dim, theta).to(device=pos.device) else: return _flux_rope(pos, dim, theta) diffusers.models.transformers.transformer_flux.rope = new_flux_rope pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", revision='refs/pr/1', torch_dtype=torch.bfloat16).to("mps") prompt = "japanese girl, photo-realistic" out = pipe( prompt=prompt, guidance_scale=0., height=1024, width=1024, num_inference_steps=4, max_sequence_length=256, ).images[0] out.save("image.png")
Finally, run a Python script to generate an image.
python image.py
output
The above is the detailed content of Run Flux.n Mac with Diffusers. For more information, please follow other related articles on the PHP Chinese website!