Problem Solving Patterns
Welcome back to our blog series on problem solving in modern software engineering!
In Part 1, we explored the Frequency Counter Pattern, a powerful technique for optimizing algorithms by efficiently counting the frequency of elements. If you missed it or want a quick refresher, feel free to check it out before continuing.
In this part, we’ll be diving into another essential pattern: the Multipointer Pattern. This pattern is invaluable when dealing with scenarios where multiple elements need to be compared, searched, or traversed simultaneously. Let’s explore how it works and where you can apply it to improve your code’s efficiency.
02. Multipointer Pattern
The Multipointer Pattern is a technique used in algorithm design where multiple pointers (or iterators) are employed to traverse data structures like arrays or linked lists. Instead of relying on a single pointer or loop, this pattern uses two or more pointers that move through the data at different speeds or from different starting points.
Example Problem
Write a function called sumZero that accepts a sorted array of integers. The function should find the first pair where the sum is zero. If such a pair exists, return an array that includes both values; otherwise, return undefined.
sumZero([-3,-2,-1,0,1,2,3]) //output: [-3, 3] sumZero([-2,0,1,3]) //output: undefined sumZero([-4, -3, -2, -1, 0, 1, 2, 5]) //output: [-2, 2]
Basic Solution
function sumZero(arr){ for (let i = 0; i < arr.length; i++) { for (let j = i+1; j < arr.length; j++) { if (arr[i] + arr[j] === 0) { console.log(arr[i] + arr[j]) return [arr[i], arr[j]] } } } }
Time Complexity - O(N^2)
Solution using Multipointer Pattern
step 1: Understand the problem
We need to find two numbers in a **sorted array that add up to zero. Since the array is sorted, we can take advantage of this order to find the solution more efficiently.
step 2: Initialize Two Pointers
Set up two pointers: one (left) starting at the beginning of the array, and the other (right) starting at the end.
Example:
Array: [-4, -3, -2, -1, 0, 1, 2, 5] Left Pointer (L): -4 Right Pointer (R): 5
Step 3: Calculate the Sum of the Values at the Pointers
Add the values at the left and right pointers to get the sum
Sum = -4 + 5 = 1
Step 4: Compare the Sum with Zero
- If the sum is greater than zero: Move the right pointer one step to the left to decrease the sum.
Sum is 1 > 0, so move the right pointer left: Array: [-4, -3, -2, -1, 0, 1, 2, 5] Left Pointer (L): -4 Right Pointer (R): 2
- If the sum is less than zero: Move the left pointer one step to the right to increase the sum.
New Sum = -4 + 2 = -2 Sum is -2 < 0, so move the left pointer right: Array: [-4, -3, -2, -1, 0, 1, 2, 5] Left Pointer (L): -3 Right Pointer (R): 2
Step 5: Repeat the Process
Continue moving the pointers and calculating the sum until they meet or a pair is found.
New Sum = -3 + 2 = -1 Sum is -1 < 0, so move the left pointer right: Array: [-4, -3, -2, -1, 0, 1, 2, 5] Left Pointer (L): -2 Right Pointer (R): 2
The sum is zero, so the function returns [-2, 2].
If the loop completes without finding such a pair, return undefined.
Final Code
function sumZero(arr) { let left = 0; // Initialize the left pointer at the start of the array let right = arr.length - 1; // Initialize the right pointer at the end of the array while (left < right) { // Continue until the pointers meet const sum = arr[left] + arr[right]; // Calculate the sum of the values at the pointers if (sum === 0) { // If the sum is zero, return the pair return [arr[left], arr[right]]; } else if (sum > 0) { // If the sum is greater than zero, move the right pointer left right--; } else { // If the sum is less than zero, move the left pointer right left++; } } return undefined; // If no pair is found, return undefined }
NOTE:
Time Complexity: O(n) – The function is efficient and scales linearly with the size of the array.
Space Complexity: O(1) – The function uses a minimal amount of additional memory.
Conclusion
The Multipointer Pattern is a powerful technique for solving problems that involve searching, comparing, or manipulating elements in a sorted data structure. By using multiple pointers that move towards each other, we can significantly improve the efficiency of algorithms, reducing time complexity from O(n²) to O(n) in many cases. This pattern is versatile and can be applied to a wide range of problems, making it an essential strategy for optimizing performance in your code.
Stay tuned for our next post, where we’ll dive into the Sliding Window Pattern another essential tool for tackling problems involving dynamic data segments. It’s an incredibly useful pattern that can help you solve even more complex challenges with ease!
The above is the detailed content of Problem Solving Patterns. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.
