SOLID principles using some fun analogies with Vehicle Example
SOLID is an acronym for a group of five good principles (rules) in computer programming. SOLID allows programmers to write code that is easier to understand and change later on. SOLID is often used with systems that use an object-oriented design.
Let's explain the SOLID principles using the vehicle example. Imagine we're designing a system to manage different types of vehicles, like cars and electric cars, for a transportation service.
S - Single Responsibility Principle (SRP)
Vehicle Example: Imagine you have a car. It's responsible for driving, but it shouldn't be responsible for handling its own maintenance (like oil changes or tyre rotations). Instead, a separate mechanic is responsible for that.
Explanation: In our code, the Vehicle class should only handle things related to the vehicle itself, like storing its make and model. If we need to manage maintenance, we create a separate Maintenance class for that. This way, each class has one job or responsibility, making the code easier to manage.
class Vehicle def initialize(make, model) @make = make @model = model end end class Maintenance def initialize(vehicle) @vehicle = vehicle end def perform_maintenance puts "Performing maintenance on #{@vehicle.make} #{@vehicle.model}" end end
O - Open/Closed Principle (OCP)
Vehicle Example: Suppose you have a basic car, and now you want to add an electric car to your system. You shouldn't have to modify the existing car class to add features for electric cars. Instead, you can extend the existing functionality by creating a new class for electric cars.
Explanation: The Vehicle class is open for extension (you can create new types of vehicles like ElectricVehicle), but it's closed for modification (you don't need to change the Vehicle class itself to add new types).
class Vehicle def initialize(make, model) @make = make @model = model end def description "#{@make} #{@model}" end end class ElectricVehicle < Vehicle def initialize(make, model, battery_range) super(make, model) @battery_range = battery_range end def description "#{super} with #{@battery_range} miles battery range" end end
L - Liskov Substitution Principle (LSP)
Vehicle Example: Imagine you have a fleet of vehicles, and you can replace any regular car with an electric car without any issues. Both should be able to perform their basic function - driving - without breaking the system.
Explanation: Any subclass (like ElectricVehicle) should be able to replace its parent class (Vehicle) without altering the behaviour of the program. This ensures that our code can handle different types of vehicles in the same way.
class Vehicle def initialize(make, model) @make = make @model = model end def drive puts "Driving the #{@make} #{@model}" end end class ElectricVehicle < Vehicle def drive puts "Driving the electric #{@make} #{@model} quietly" end end def test_drive(vehicle) vehicle.drive end car = Vehicle.new("Toyota", "Corolla") ev = ElectricVehicle.new("Tesla", "Model 3") test_drive(car) # Driving the Toyota Corolla test_drive(ev) # Driving the electric Tesla Model 3 quietly
I - Interface Segregation Principle (ISP)
Vehicle Example: Imagine you have different types of vehicles: some can be charged (like electric cars), and some can only be driven (like gas cars). You don't want a gas car to have to deal with charging-related methods.
Explanation: Classes should only implement the interfaces (or behaviours) they need. For example, an ElectricVehicle might implement both Drivable and Chargeable interfaces, while a regular Vehicle only implements Drivable.
module Drivable def drive raise NotImplementedError, "This #{self.class} cannot drive" end end module Chargeable def charge raise NotImplementedError, "This #{self.class} cannot be charged" end end class Vehicle include Drivable def initialize(make, model) @make = make @model = model end def drive puts "Driving the #{@make} #{@model}" end end class ElectricVehicle < Vehicle include Chargeable def initialize(make, model, battery_range) super(make, model) @battery_range = battery_range end def drive puts "Driving the electric #{@make} #{@model} quietly" end def charge puts "Charging the #{@make} #{@model}" end end
D - Dependency Inversion Principle (DIP)
Vehicle Example: Imagine a car can have different types of engines: a gas engine or an electric engine. Instead of directly depending on a specific engine type, the car should depend on a more general Engine interface so it can use any type of engine.
Explanation: High-level modules (like the Vehicle) should not depend on low-level modules (like GasEngine or ElectricEngine). Both should depend on abstractions (like an Engine interface). This makes the system more flexible and easier to change.
class Engine def start raise NotImplementedError, "This #{self.class} cannot start" end end class GasEngine < Engine def start puts "Starting gas engine" end end class ElectricEngine < Engine def start puts "Starting electric engine" end end class Vehicle def initialize(engine) @engine = engine end def start @engine.start end end gas_engine = GasEngine.new electric_engine = ElectricEngine.new gas_car = Vehicle.new(gas_engine) electric_car = Vehicle.new(electric_engine) gas_car.start # Starting gas engine electric_car.start # Starting electric engine
By following the SOLID principles in this vehicle example, we can build a system that is easy to maintain, extend, and adapt to new requirements.
LinkedIn: https://www.linkedin.com/in/anandsoni11/
The above is the detailed content of SOLID principles using some fun analogies with Vehicle Example. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing
