Hi, I found a dataset of Amazon products in Kaggle and decided to find a relationship between price and star rating.
Full code in :
https://github.com/victordalet/Kaggle_analysis/tree/feat/amazon_products
To do this, I use SQLAlchemy to convert the csv file into a small database, and plotly to display the information.
pip install SQLAlchemy pip install plotly
In the following script, I extract the data and obtain :
import pandas as pd from sqlalchemy import create_engine, text import plotly.express as px class Main: def __init__(self): self.result = None self.connection = None self.engine = create_engine("sqlite:///my_database.db", echo=False) self.df = pd.read_csv("amazon_product.csv") self.df.to_sql("products", self.engine, index=False, if_exists="append") self.get_data() self.transform_data() self.display_graph() self.get_data_number_start_and_price() self.transform_data() self.display_graph() self.get_data_number_start_and_start() self.display_graph() def get_data(self): self.connection = self.engine.connect() query = text( "SELECT product_price, product_star_rating FROM products where product_price != '$0.00'" ) self.result = self.connection.execute(query).fetchall() def get_data_number_start_and_price(self): query = text( "SELECT product_price, product_num_ratings FROM products where product_price != '$0.00'" ) self.result = self.connection.execute(query).fetchall() def get_data_number_start_and_start(self): query = text( "SELECT product_star_rating, product_num_ratings FROM products where product_price != '$0.00'" ) self.result = self.connection.execute(query).fetchall() for i in range(len(self.result)): self.result[i] = [self.result[i][0], self.result[i][1]] def transform_data(self): for i in range(len(self.result)): self.result[i] = [float(self.result[i][0].split("$")[1]), self.result[i][1]] def display_graph(self): fig = px.scatter( self.result, x=0, y=1, title="Amazon Product Price vs Star Rating" ) fig.show() Main()
We can see, there's not necessarily a relationship between price and rating, but the higher the price, the lower the rating, and the more reviews, the higher the rating.
Which seems logical, since if a product is bought a lot, it means it's popular.
The above is the detailed content of Amazon product dataset. For more information, please follow other related articles on the PHP Chinese website!