Table of Contents
d[IA]gnosis
Importing ICD-10 codes
Diagnostic capture from HL7
Screenshots of diagnoses in plaintext
Analysis history
In the next article...
Home Backend Development Python Tutorial d[IA]gnosis: developing RAG applications with IRIS for Healt

d[IA]gnosis: developing RAG applications with IRIS for Healt

Aug 29, 2024 am 06:32 AM

With the introduction of vector data types and the Vector Search functionality in IRIS, a whole world of possibilities opens up for the development of applications and an example of these applications is the one that I recently saw published in a public contest by the Ministry of Health from Valencia in which they requested a tool to assist in ICD-10 coding using AI models.

How could we implement an application similar to the one requested? Let's see what we would need:

  1. List of ICD-10 codes, which we will use as context for our RAG application to search for diagnoses within the plain texts.
  2. A trained model that vectorizes the texts in which we are going to look for equivalences in the ICD-10 codes.
  3. The Python libraries necessary for the ingestion and vectorization of ICD-10 codes and texts.
  4. A friendly front-end that supports texts on which we look for possible diagnoses.
  5. Orchestration of requests received from the front-end.

What does IRIS provide us to cover the above needs?

  1. CSV import, either using the RecordMapper functionality or directly using Embedded Python.
  2. Embedded Python allows us to implement the Python code necessary to generate the vectors using the selected model.
  3. Publish REST APIs that will be invoked from the front-end application.
  4. Interoperability productions that allow tracking of information within IRIS.

Well, we only have to see the developed example:

d[IA]gnosis

Associated with this article you have access to the developed application, in the next articles we will see in detail how we implement each of the functionalities, from the use of the model, the storage of the vectors and the use of vector searches.

Let's review the application:

Importing ICD-10 codes

d[IA]gnosis: developing RAG applications with IRIS for Healt

From the configuration screen we are told the format that the CSV file must comply with the ICD-10 codes that we are going to import. The loading and vectorization process consumes a lot of time and resources, which is why the deployment of the Docker container configures not only the RAM memory usable by Docker but also the disk memory in case the requirements exceed the allocated RAM:

  # iris
  iris:
    init: true
    container_name: iris
    build:
      context: .
      dockerfile: iris/Dockerfile
    ports:
      - 52774:52773
      - 51774:1972
    volumes:
    - ./shared:/shared
    environment:
    - ISC_DATA_DIRECTORY=/shared/durable
    command: --check-caps false --ISCAgent false
    mem_limit: 30G
    memswap_limit: 32G
Copy after login

The file with the ICD-10 codes is available in the project path /shared/cie10/icd10.csv, once 100% is reached the application will be ready to be used.

In our application we have defined two different functionalities for diagnostic coding, one based on HL7 messages received in the system and another based on plain texts.

Diagnostic capture from HL7

The project contains some HL7 messages prepared for testing, it is only necessary to copy the /shared/hl7/messagesa01_en.hl7 file to the /shared/HL7In folder and the associated production will be responsible for extracting the diagnosis from it to display it in the web application:

d[IA]gnosis: developing RAG applications with IRIS for Healt

From the diagnosis requests screen we can see all the diagnoses received via HL7 messaging. To code them to ICD-10 we only need to click on the magnifying glass to show a list of those ICD-10 codes closest to the diagnosis received:

d[IA]gnosis: developing RAG applications with IRIS for Healt

Once selected, we will see the diagnosis and its associated ICD-10 code in the list. By clicking on the button with the envelope icon, a message will be generated using the original and including the new one selected within the diagnosis segment:

MSH|^~\&|HIS|HULP|EMPI||||ADT^A08|592956|P|2.5.1
EVN|A01|
PID|||1556655212^^^SERMAS^SN~922210^^^HULP^PI||GARCÍA PÉREZ^JUAN^^^||20150403|M|||PASEO PEDRO ÁLVAREZ 195 1 CENTRO^^LEGANÉS^MADRID^28379^SPAIN||555283055^PRN^^JUAN.GARCIA@YAHOO.COM|||||||||||||||||N|
PV1||N
DG1|1||O10.91^Unspecified pre-existing hypertension complicating pregnancy^CIE10-ES|Gestational hypertension||A||
Copy after login

This message can be found in the path /shared/HL7Out

Screenshots of diagnoses in plaintext

From the Text Analyzer option, the user can include plain text on which an analysis process will be carried out. The application will search in tuples of 3 lemmatized words (eliminating articles, pronouns and other less relevant words). Once analyzed, the system will show us the relevant underlined text and the possible diagnoses located:

d[IA]gnosis: developing RAG applications with IRIS for Healt

Once the analysis has been carried out, it can be consulted at any time from the analysis history.

Analysis history

All analyzes carried out are recorded and can be consulted at any time, being able to view all possible ICD-10 codes available:

In the next article...

We will see how, using Embedded Python, we use a specific LLM model for the vectorization of both the ICD-10 codes that we will use as context and the free texts.

If you have any questions or suggestions, do not hesitate to write a comment on the article.

The above is the detailed content of d[IA]gnosis: developing RAG applications with IRIS for Healt. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

How to dynamically create an object through a string and call its methods in Python? How to dynamically create an object through a string and call its methods in Python? Apr 01, 2025 pm 11:18 PM

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

What are regular expressions? What are regular expressions? Mar 20, 2025 pm 06:25 PM

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

See all articles