Tree traversal Java
Java tree traversal is defined as an algorithm that is implemented in Java programming language, which comprises of the tree as a data structure and incorporates the fundamental of visiting all nodes of the tree through the implementation of the algorithm. Traversal in computer science data structure terminology denotes that all nodes in the data structure need to be visited in order to complete the bigger task at hand. The components of a tree are root and child nodes, some of which end at that particular node and is named as leaves and the others creating more sub-trees. In this article, we will go through the implementation of tree traversal in Java and look at the different methods through which we can achieve the same.
Start Your Free Software Development Course
Web development, programming languages, Software testing & others
Syntax
Declaration of class in Java:
class <class name> { // List the fields (variables) for the class // Define the methods of the class to perform the specified operations }
Defining a method in Java:
returnType <method name>() { // Body of the method that constitutes the steps that will fulfill the assigned task }
Declaring the node in Java:
Node<{ Data Type }> <variable name> = new Node<{ Data Type }>(" <Value>"); Access the left of the node in Java: <variable name>.left
Access the right of the node in Java:
<variable name>.right
How to perform Tree traversal in Java?
Before we start discussing the different ways of traversing a tree in Java, we first need to know how a tree is structured because this is one of the essential components in order to build the tree as a class in Java. The tree has nodes, and hence we define a node class. This class will have fields as the data that is representing the data of the node, a left pointer that points to the left of the node, and another pointer that points to the right of the node. All these fields constitute the Node class. Below is a schematic of how a tree looks like:
Once we have defined the tree class that constitutes the nodes and the pointer, it is now time to look at the 3 types of traversals that are implemented in Java and each of them having its own signature of traversal:
1 In-order Traversal
The way this traversal is defined is we visit the elements of the left subtree, followed by the node of the subtree, and then finally traverse the right subtree. The pseudocode is as follows:
- Recursively call the function by passing the left node till we reach node as null.
- Display the data
- Recursively call the function by passing the right node till we reach node as null.
The path of traversal of the In-order algorithm will be: Node 1.1→Node 1→Node 1.2→Root→ Node 2.
2. Pre-order Traversal
The way this traversal is defined is to visit the elements of the root node, traverse the left subtree, and then finally traverse the right subtree. The pseudocode is as follows:
- Traverse the root node first.
- Recursively call the function by passing the left node till we reach node as null.
- Recursively call the function by passing the right node till we reach node as null.
The path of traversal of the pre-order algorithm will be: Root→Node 1→Node 1.1→Node 1.2→ Node 2.
3. Post-order Traversal
The way this traversal is defined is we visit the elements of the left subtree, followed by the right subtree, and then finally traverse the node of the subtree till we reach the base node. The pseudocode is as follows:
- Recursively call the function by passing the left node till we reach node as null.
- Recursively call the function by passing the right node till we reach node as null.
- Display the data
The path of traversal of the post-order algorithm will be: Node 1.1→Node 1.2→ Node 1→Node 2→ Root.
Examples of Tree traversal Java
Given below are the examples of Tree traversal Java:
Example #1
In order traversal using recursion
Syntax
class NodeClass { int value; NodeClass left, right; public NodeClass(int key) { value = key; left = right = null; } } class Tree { NodeClass base; Tree() { base = null; } void inOrderFunc(NodeClass node) { if (node == null) return; inOrderFunc(node.left); System.out.print(node.value + "->"); inOrderFunc(node.right); } public static void main(String[] args) { Tree tree = new Tree(); tree.base = new NodeClass(27); tree.base.left = new NodeClass(9); tree.base.right = new NodeClass(19); tree.base.left.left = new NodeClass(91); tree.base.left.right = new NodeClass(92); System.out.println("In Order traversal"); tree.inOrderFunc(tree.base); } }
Output:
Example #2
Pre-order traversal using recursion
Syntax
class NodeClass { int item; NodeClass left, right; public NodeClass(int key) { item = key; left = right = null; } } class Tree { NodeClass base; Tree() { base = null; } void preorderFunc(NodeClass node) { if (node == null) return; //First the node: System.out.print(node.item + "->"); //Recursively look at the left side of the tree preorderFunc(node.left); //Recursively look at the right side of the tree preorderFunc(node.right); } public static void main(String[] args) { Tree tree = new Tree(); tree.base = new NodeClass(27); tree.base.left = new NodeClass(9); tree.base.right = new NodeClass(19); tree.base.left.left = new NodeClass(91); tree.base.left.right = new NodeClass(92); // preorderFunc tree traversal System.out.println("Preorder traversal: "); tree.preorderFunc(tree.base); } }
Output:
Example #3
Postorder traversal through recursion
Syntax
class NodeClass { int item; NodeClass left, right; public NodeClass(int key) { item = key; left = right = null; } } class Tree { NodeClass base; Tree() { base = null; } void postorderFunc(NodeClass node) { if (node == null) return; postorderFunc(node.left); postorderFunc(node.right); System.out.print(node.item + "->"); } public static void main(String[] args) { Tree tree = new Tree(); tree.base = new NodeClass(27); tree.base.left = new NodeClass(9); tree.base.right = new NodeClass(19); tree.base.left.left = new NodeClass(91); tree.base.left.right = new NodeClass(92); System.out.println("Postorder traversal: "); tree.postorderFunc(tree.base); } }
Output:
Conclusion
This article looked at all the various ways of implementing tree traversal in Java, along with examples from the real world. Readers are encouraged to look at the traversal by adding more nodes into the code and seeing the traversal results!
The above is the detailed content of Tree traversal Java. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
