Unexpected drug interactions (DDIs) are an important issue in drug research and clinical application because they are highly likely to cause serious adverse drug effects. reaction or drug withdrawal.
While many deep learning models have achieved good results in DDI prediction, model interpretability to reveal the underlying causes of DDI has not been widely explored.
Researchers from Fuzhou University, the First Affiliated Hospital of Fujian Medical University and Yuanxing Intelligent Medicine proposed MeTDDI - a deep learning framework with local-global self-attention and joint attention for learning based on DDI prediction plot of subject.
Regarding interpretability, researchers conducted an extensive evaluation on 73 drugs (13,786 DDIs), and MeTDDI can accurately explain the structural mechanisms of 5,602 DDIs involving 58 drugs. Furthermore, MeTDDI shows potential to explain complex DDI mechanisms and reduce DDI risk.
MeTDDI provides a new perspective for exploring DDI mechanisms, which will facilitate drug discovery and polypharmacy, thereby providing safer treatments for patients.
The study was titled "Learning motif-based graphs for drug–drug interaction prediction via local–global self-attention" and was published in "Nature Machine Intelligence" on August 27, 2024.
Benefiting from local-global self-attention and joint attention structures, MeTDDI can effectively learn intra- and intermolecular substructure interactions within/between graphs based on motifs , thereby performing DDI reasoning.
Evaluation results show that it achieves competitive performance compared to baselines in both classification and regression tasks. MeTDDI can also accurately identify the mechanistic role of a drug (perpetrator or victim) in DDI and quantify the impact of the perpetrator on the victim PK, which is very beneficial for both drug research and clinical applications.
Illustration: Performance comparison of models in predicting AUC FC values. (Source: paper)Regarding model interpretability, MeTDDI demonstrates the ability to identify key mechanistic substructures relevant to DDI.
First, the key substructures visualized by MeTDDI roughly match those reported in the literature from the analysis of 73 representative compounds (with 13,786 DDI pairs).
Illustration: Interpretability analysis of MeTDDI is used to explain the DDI mechanism. (Source: paper)Second, the researchers evaluated the model interpretability of MeTDDI and two state-of-the-art models, namely CIGIN and CGIB. The results show that MeTDDI also exhibits excellent performance in terms of model interpretability.
Additionally, MeTDDI can highlight metabolic sites of chemicals associated with enzyme inhibition.
Advantages of MeTDDI
Traditional methods only explain the mechanism of DDI by testing the metabolic enzyme inhibition of the perpetrator in vitro, without fully considering the victim. This is problematic because the potency of enzyme inhibition by the perpetrator can vary depending on the chemical identity of the victim.
被害者は、代謝酵素 (特に CYP) と加害者の結合または相互作用パターンを変更し、その結果、さまざまな酵素阻害メカニズムが生じる可能性があります。これは、インビトロで単独で使用すると代謝酵素の強力な阻害剤であるエチニルエストラジオールやゲストデンなどの一部の化学物質が、それらの犠牲者と組み合わせると効果が低くなる理由を説明する可能性があります。これは、エチニルエストラジオールを用いた研究でなぜ 2 つの反応しか観察されなかったのかを説明する可能性があり、これが in vitro で CYP3A4 を不活化するメカニズムであると考えられています。
さらに、パロキセチンとイトラコナゾールのケーススタディでは、MeTDDI が化学物質のモチーフの変化を正確に予測し、生物学的実験の結果と一致していることが示されており、研究者が薬物の構造を変更して MMDDI のリスクを軽減するのに役立つ可能性が実証されています。
要約すると、MeTDDI は DDI 予測機能を強化し、DDI メカニズムを理解して探索するための新しい視点を提供します。これにより、医薬品開発とポリファーマシーが促進され、それによって患者により安全な治療が提供されます。
The above is the detailed content of Efficiently and accurately predict DDI, the explanatory drug AI model of Fuzhou University and Yuanxing Intelligent Drug Team was published in Nature sub-journal. For more information, please follow other related articles on the PHP Chinese website!