Hi,
I've found a small article that talks about pet emissions, so I've decided to display the CO2 emissions if they don't exist.
Code :
https://github.com/victordalet/Kaggle_analysis/tree/feat/dog_co2
Sources:
https://www.lekaba.fr/article/l-empreinte-carbone-des-chiens-et-des-chats-un-amour-qui-pese-lourd-sur-le-climat
https://www.umweltbundesamt.de/en/image/global-f-gas-emissions-up-to-2050-total
https://www.rover.com/fr/blog/combien-y-a-t-il-de-chats-dans-le-monde/
First, I obtain data estimating the world's CO2 consumption, the average emission of a dog and a cat, and the number of these pets.
import plotly.express as px class Main: def __init__(self): self.estimation = { "2005": 750, "2010": 900, "2020": 1300, "2030": 1800, "2040": 2700, "2050": 4000, } self.estimation_no_cat = { "2005": 750, "2010": 900, "2020": 1300, "2030": 1800, "2040": 2700, "2050": 4000, } self.estimation_no_dog = { "2005": 750, "2010": 900, "2020": 1300, "2030": 1800, "2040": 2700, "2050": 4000, } self.estimation_no_cat_and_dog = { "2005": 750, "2010": 900, "2020": 1300, "2030": 1800, "2040": 2700, "2050": 4000, } self.cat_emission = 240 self.dog_emission = 358 self.nb_cats = 600000000 self.nb_dogs = 900000000
The total emission is in millions of tons, so I've created a method for converting the animal data, which are in kg.
@staticmethod def transform_to_million_of_tonnes(value): return value / (1000000 * 1000)
To modify the estimate without cat or dog, go through the first estimate and replace the values of the other dictionaries with the values found in the first step.
def calculate(self): for year, value in self.estimation.items(): self.estimation_no_cat[year] = value - self.transform_to_million_of_tonnes( self.cat_emission * self.nb_cats ) self.estimation_no_dog[year] = value - self.transform_to_million_of_tonnes( self.dog_emission * self.nb_dogs ) self.estimation_no_cat_and_dog[year] = ( value - self.transform_to_million_of_tonnes(self.cat_emission * self.nb_cats) - self.transform_to_million_of_tonnes(self.dog_emission * self.nb_dogs) )
To display a graph with all the data, I use the plotly library.
Code for pip installation :
pip install plotly
Code to display the three estimates :
def display(self): fig = px.line( x=list(self.estimation.keys()), y=[ list(self.estimation.values()), list(self.estimation_no_cat.values()), list(self.estimation_no_dog.values()), list(self.estimation_no_cat_and_dog.values()), ], labels={ "x": "Year", "y": "CO2 Emission (in million of tonnes)", "color": "Legend", }, title="CO2 Emission with and without cats and dogs", color_discrete_map={ "CO2 Emission": "blue", "CO2 Emission without cats": "green", "CO2 Emission without dogs": "red", "CO2 Emission without cats and dogs": "orange", }, ) fig.show()
So now we have the chart with our results.
The above is the detailed content of Emmision COf a cat and a dog with python. For more information, please follow other related articles on the PHP Chinese website!