


Pytest and PostgreSQL: Fresh database for every test (part II)
In the previous post, we created the Pytest fixture which will create/drop Postgres database before/after the test method. In this part, I want to improve the fixture to be more flexible and configurable with the help of Pytest factory fixtures.
Limits of static fixture
For example, if you have more than one database to mock in the test
def test_create_user(test_db1, test_db2): ...
you must create almost two identical fixtures:
TEST_DB_URL = "postgresql://localhost" TEST_DB1_NAME = "test_foo" TEST_DB2_NAME = "test_bar" @pytest.fixture def test_db1(): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB1_NAME}" WITH (FORCE)') cur.execute(f'CREATE DATABASE "{TEST_DB1_NAME}"') with psycopg.connect(TEST_DB_URL, dbname=TEST_DB1_NAME) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB1_NAME}" WITH (FORCE)') @pytest.fixture def test_db2(): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB2_NAME}" WITH (FORCE)') cur.execute(f'CREATE DATABASE "{TEST_DB2_NAME}"') with psycopg.connect(TEST_DB_URL, dbname=TEST_DB2_NAME) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{TEST_DB2_NAME}" WITH (FORCE)')
Pytest fixture factories
"Static" fixtures are a bit limiting here. When needed almost the same with just a slight difference, you need to duplicate a code. Hopefully, the Pytest has a concept of factories as fixtures.
Factory fixture is a fixture which returns another fixture. Because, like every factory, it is a function, it can accept arguments to customize returned fixtures. By convention, you can prefix them with make_*, like make_test_db.
Specialized fixtures
The only argument to our fixture factory make_test_db will be a test database name to create/drop.
So, let's create two "specialized" fixtures based on the make_test_db factory fixture.
The usage will looks like:
@pytest.fixture def test_db_foo(make_test_db): yield from make_test_db("test_foo") @pytest.fixture def test_db_bar(make_test_db): yield from make_test_db("test_bar")
Sidenote: yield from
Did you notice the yield from? There is a key difference between yield and yield from on how they handle the flow of data and control within generators.
In Python, both yield and yield from are used within generator functions to produce a sequence of values, but
- yield is used to pause a generator function's execution and return a single value to the caller.
- while yield from is used to delegate the generation of values to another generator. It essentially "flattens" the nested generator, passing its yielded values directly to the caller of the outer generator.
I.e., we don't want to "yield" from a specialized fixture but from a fixture factory. Therefore yield from is required here.
Fixture factory to create/drop database
Changes required to our original fixture creating/dropping database are actually almost none except the wrapping the code to the inner function.
@pytest.fixture def make_test_db(): def _(test_db_name: str): with psycopg.connect(TEST_DB_URL, autocommit=True) as conn: cur = conn.cursor() cur.execute(f'DROP DATABASE IF EXISTS "{test_db_name}" WITH (FORCE)') # type: ignore cur.execute(f'CREATE DATABASE "{test_db_name}"') # type: ignore with psycopg.connect(TEST_DB_URL, dbname=test_db_name) as conn: yield conn cur.execute(f'DROP DATABASE IF EXISTS "{test_db_name}" WITH (FORCE)') # type: ignore yield _
Bonus: Rewrite migrations fixture as factory fixture
In the previous part, I also had a fixture applying Yoyo migrations to just created empty database. It was also not very flexible. Let's do the same and wrap actual code to the inner function.
In this case, because the code doesn't need to do cleanup after return from test method (no yield in it), the
- factory fixture returns (not yield) inner function
- specialized fixture calls (not yield from) factory fixture
@pytest.fixture def make_yoyo(): """Applies Yoyo migrations to test DB.""" def _(test_db_name: str, migrations_dir: str): url = ( urlparse(TEST_DB_URL) . _replace(scheme="postgresql+psycopg") . _replace(path=test_db_name) .geturl() ) backend = get_backend(url) migrations = read_migrations(migrations_dir) if len(migrations) == 0: raise ValueError(f"No Yoyo migrations found in '{migrations_dir}'") with backend.lock(): backend.apply_migrations(backend.to_apply(migrations)) return _ @pytest.fixture def yoyo_foo(make_yoyo): migrations_dir = str(Path(__file__, "../../foo/migrations").resolve()) make_yoyo("test_foo", migrations_dir) @pytest.fixture def yoyo_bar(make_yoyo): migrations_dir = str(Path(__file__, "../../bar/migrations").resolve()) make_yoyo("test_bar", migrations_dir)
A test method which need two databases and apply migrations to them:
from psycopg import Connection def test_get_new_users_since_last_run( test_db_foo: Connection, test_db_bar: Connection, yoyo_foo, yoyo_bar): test_db_foo.execute("...") ...
Conclusion
Building your own fixture factory creating and dropping databases for the Pytest method is actually a good exercise to practice Python generator and yield/yield from operators.
I hope this article helped you with your own database test suite. Feel free to leave me your question in the comments and happy coding!
The above is the detailed content of Pytest and PostgreSQL: Fresh database for every test (part II). For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
