Array Searching in DSA using JavaScript: From Basics to Advanced
Array searching is a fundamental concept in Data Structures and Algorithms (DSA). This blog post will cover various array searching techniques using JavaScript, ranging from basic to advanced levels. We'll explore 20 examples, discuss time complexities, and provide LeetCode problems for practice.
Table of Contents
- Linear Search
- Binary Search
- Jump Search
- Interpolation Search
- Exponential Search
- Subarray Search
- Two Pointer Technique
- Sliding Window Technique
- Advanced Searching Techniques
- LeetCode Practice Problems
1. Linear Search
Linear search is the simplest searching algorithm that works on both sorted and unsorted arrays.
Time Complexity: O(n), where n is the number of elements in the array.
Example 1: Basic Linear Search
function linearSearch(arr, target) { for (let i = 0; i < arr.length; i++) { if (arr[i] === target) { return i; } } return -1; } const arr = [5, 2, 8, 12, 1, 6]; console.log(linearSearch(arr, 8)); // Output: 2 console.log(linearSearch(arr, 3)); // Output: -1
Example 2: Find All Occurrences
function findAllOccurrences(arr, target) { const result = []; for (let i = 0; i < arr.length; i++) { if (arr[i] === target) { result.push(i); } } return result; } const arr = [1, 2, 3, 4, 2, 5, 2, 6]; console.log(findAllOccurrences(arr, 2)); // Output: [1, 4, 6]
2. Binary Search
Binary search is an efficient algorithm for searching in sorted arrays.
Time Complexity: O(log n)
Example 3: Iterative Binary Search
function binarySearch(arr, target) { let left = 0; let right = arr.length - 1; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } const sortedArr = [1, 3, 5, 7, 9, 11, 13, 15]; console.log(binarySearch(sortedArr, 7)); // Output: 3 console.log(binarySearch(sortedArr, 10)); // Output: -1
Example 4: Recursive Binary Search
function recursiveBinarySearch(arr, target, left = 0, right = arr.length - 1) { if (left > right) { return -1; } const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { return recursiveBinarySearch(arr, target, mid + 1, right); } else { return recursiveBinarySearch(arr, target, left, mid - 1); } } const sortedArr = [1, 3, 5, 7, 9, 11, 13, 15]; console.log(recursiveBinarySearch(sortedArr, 13)); // Output: 6 console.log(recursiveBinarySearch(sortedArr, 4)); // Output: -1
3. Jump Search
Jump search is an algorithm for sorted arrays that works by skipping some elements to reduce the number of comparisons.
Time Complexity: O(√n)
Example 5: Jump Search Implementation
function jumpSearch(arr, target) { const n = arr.length; const step = Math.floor(Math.sqrt(n)); let prev = 0; while (arr[Math.min(step, n) - 1] < target) { prev = step; step += Math.floor(Math.sqrt(n)); if (prev >= n) { return -1; } } while (arr[prev] < target) { prev++; if (prev === Math.min(step, n)) { return -1; } } if (arr[prev] === target) { return prev; } return -1; } const sortedArr = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]; console.log(jumpSearch(sortedArr, 55)); // Output: 10 console.log(jumpSearch(sortedArr, 111)); // Output: -1
4. Interpolation Search
Interpolation search is an improved variant of binary search for uniformly distributed sorted arrays.
Time Complexity: O(log log n) for uniformly distributed data, O(n) in the worst case.
Example 6: Interpolation Search Implementation
function interpolationSearch(arr, target) { let low = 0; let high = arr.length - 1; while (low <= high && target >= arr[low] && target <= arr[high]) { if (low === high) { if (arr[low] === target) return low; return -1; } const pos = low + Math.floor(((target - arr[low]) * (high - low)) / (arr[high] - arr[low])); if (arr[pos] === target) { return pos; } else if (arr[pos] < target) { low = pos + 1; } else { high = pos - 1; } } return -1; } const uniformArr = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]; console.log(interpolationSearch(uniformArr, 64)); // Output: 6 console.log(interpolationSearch(uniformArr, 100)); // Output: -1
5. Exponential Search
Exponential search is useful for unbounded searches and works well for bounded arrays too.
Time Complexity: O(log n)
Example 7: Exponential Search Implementation
function exponentialSearch(arr, target) { if (arr[0] === target) { return 0; } let i = 1; while (i < arr.length && arr[i] <= target) { i *= 2; } return binarySearch(arr, target, i / 2, Math.min(i, arr.length - 1)); } function binarySearch(arr, target, left, right) { while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } const sortedArr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; console.log(exponentialSearch(sortedArr, 7)); // Output: 6 console.log(exponentialSearch(sortedArr, 16)); // Output: -1
6. Subarray Search
Searching for subarrays within a larger array is a common problem in DSA.
Example 8: Naive Subarray Search
Time Complexity: O(n * m), where n is the length of the main array and m is the length of the subarray.
function naiveSubarraySearch(arr, subArr) { for (let i = 0; i <= arr.length - subArr.length; i++) { let j; for (j = 0; j < subArr.length; j++) { if (arr[i + j] !== subArr[j]) { break; } } if (j === subArr.length) { return i; } } return -1; } const mainArr = [1, 2, 3, 4, 5, 6, 7, 8, 9]; const subArr = [3, 4, 5]; console.log(naiveSubarraySearch(mainArr, subArr)); // Output: 2
Example 9: KMP Algorithm for Subarray Search
Time Complexity: O(n + m)
function kmpSearch(arr, pattern) { const n = arr.length; const m = pattern.length; const lps = computeLPS(pattern); let i = 0, j = 0; while (i < n) { if (pattern[j] === arr[i]) { i++; j++; } if (j === m) { return i - j; } else if (i < n && pattern[j] !== arr[i]) { if (j !== 0) { j = lps[j - 1]; } else { i++; } } } return -1; } function computeLPS(pattern) { const m = pattern.length; const lps = new Array(m).fill(0); let len = 0; let i = 1; while (i < m) { if (pattern[i] === pattern[len]) { len++; lps[i] = len; i++; } else { if (len !== 0) { len = lps[len - 1]; } else { lps[i] = 0; i++; } } } return lps; } const mainArr = [1, 2, 3, 4, 5, 6, 7, 8, 9]; const pattern = [3, 4, 5]; console.log(kmpSearch(mainArr, pattern)); // Output: 2
7. Two Pointer Technique
The two-pointer technique is often used for searching in sorted arrays or when dealing with pairs.
Example 10: Find Pair with Given Sum
Time Complexity: O(n)
function findPairWithSum(arr, target) { let left = 0; let right = arr.length - 1; while (left < right) { const sum = arr[left] + arr[right]; if (sum === target) { return [left, right]; } else if (sum < target) { left++; } else { right--; } } return [-1, -1]; } const sortedArr = [1, 2, 3, 4, 5, 6, 7, 8, 9]; console.log(findPairWithSum(sortedArr, 10)); // Output: [3, 7]
Example 11: Three Sum Problem
Time Complexity: O(n^2)
function threeSum(arr, target) { arr.sort((a, b) => a - b); const result = []; for (let i = 0; i < arr.length - 2; i++) { if (i > 0 && arr[i] === arr[i - 1]) continue; let left = i + 1; let right = arr.length - 1; while (left < right) { const sum = arr[i] + arr[left] + arr[right]; if (sum === target) { result.push([arr[i], arr[left], arr[right]]); while (left < right && arr[left] === arr[left + 1]) left++; while (left < right && arr[right] === arr[right - 1]) right--; left++; right--; } else if (sum < target) { left++; } else { right--; } } } return result; } const arr = [-1, 0, 1, 2, -1, -4]; console.log(threeSum(arr, 0)); // Output: [[-1, -1, 2], [-1, 0, 1]]
8. Sliding Window Technique
The sliding window technique is useful for solving array/string problems with contiguous elements.
Example 12: Maximum Sum Subarray of Size K
Time Complexity: O(n)
function maxSumSubarray(arr, k) { let maxSum = 0; let windowSum = 0; for (let i = 0; i < k; i++) { windowSum += arr[i]; } maxSum = windowSum; for (let i = k; i < arr.length; i++) { windowSum = windowSum - arr[i - k] + arr[i]; maxSum = Math.max(maxSum, windowSum); } return maxSum; } const arr = [1, 4, 2, 10, 23, 3, 1, 0, 20]; console.log(maxSumSubarray(arr, 4)); // Output: 39
Example 13: Longest Substring with K Distinct Characters
Time Complexity: O(n)
function longestSubstringKDistinct(s, k) { const charCount = new Map(); let left = 0; let maxLength = 0; for (let right = 0; right < s.length; right++) { charCount.set(s[right], (charCount.get(s[right]) || 0) + 1); while (charCount.size > k) { charCount.set(s[left], charCount.get(s[left]) - 1); if (charCount.get(s[left]) === 0) { charCount.delete(s[left]); } left++; } maxLength = Math.max(maxLength, right - left + 1); } return maxLength; } const s = "aabacbebebe"; console.log(longestSubstringKDistinct(s, 3)); // Output: 7
9. Advanced Searching Techniques
Example 14: Search in Rotated Sorted Array
Time Complexity: O(log n)
function searchRotatedArray(arr, target) { let left = 0; let right = arr.length - 1; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } if (arr[left] <= arr[mid]) { if (target >= arr[left] && target < arr[mid]) { right = mid - 1; } else { left = mid + 1; } } else { if (target > arr[mid] && target <= arr[right]) { left = mid + 1; } else { right = mid - 1; } } } return -1; } const rotatedArr = [4, 5, 6, 7, 0, 1, 2]; console.log(searchRotatedArray(rotatedArr, 0)); // Output: 4
Example 15: Search in a 2D Matrix
Time Complexity: O(log(m * n)), where m is the number of rows and n is the number of columns
function searchMatrix(matrix, target) { if (!matrix.length || !matrix[0].length) return false; const m = matrix.length; const n = matrix[0].length; let left = 0; let right = m * n - 1; while (left <= right) { const mid = Math.floor((left + right) / 2); const midValue = matrix[Math.floor(mid / n)][mid % n]; if (midValue === target) { return true; } else if (midValue < target) { left = mid + 1; } else { right = mid - 1; } } return false; } const matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]; console.log(searchMatrix(matrix, 3)); // Output: true
Example 16: Find Peak Element
Time Complexity: O(log n)
function findPeakElement(arr) { let left = 0; let right = arr.length - 1; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > arr[mid + 1]) { right = mid; } else { left = mid + 1; } } return left; } const arr = [1, 2, 1, 3, 5, 6, 4]; console.log(findPeakElement(arr)); // Output: 5
Example 17: Search in Sorted Array of Unknown Size
Time Complexity: O(log n)
function searchUnknownSize(arr, target) { let left = 0; let right = 1; while (arr[right] < target) { left = right; right *= 2; } return binarySearch(arr, target, left, right); } function binarySearch(arr, target, left, right) { while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { return mid; } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return -1; } // Assume we have a special array that throws an error when accessing out-of-bounds elements const specialArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]; console.log(searchUnknownSize(specialArray, 7)); // Output: 6
Example 18: Find Minimum in Rotated Sorted Array
Time Complexity: O(log n)
function findMin(arr) { let left = 0; let right = arr.length - 1; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] > arr[right]) { left = mid + 1; } else { right = mid; } } return arr[left]; } const rotatedArr = [4, 5, 6, 7, 0, 1, 2]; console.log(findMin(rotatedArr)); // Output: 0
Example 19: Search for a Range
Time Complexity: O(log n)
function searchRange(arr, target) { const left = findBound(arr, target, true); if (left === -1) return [-1, -1]; const right = findBound(arr, target, false); return [left, right]; } function findBound(arr, target, isLeft) { let left = 0; let right = arr.length - 1; let result = -1; while (left <= right) { const mid = Math.floor((left + right) / 2); if (arr[mid] === target) { result = mid; if (isLeft) { right = mid - 1; } else { left = mid + 1; } } else if (arr[mid] < target) { left = mid + 1; } else { right = mid - 1; } } return result; } const arr = [5, 7, 7, 8, 8, 10]; console.log(searchRange(arr, 8)); // Output: [3, 4]
Example 20: Median of Two Sorted Arrays
Time Complexity: O(log(min(m, n))), where m and n are the lengths of the two arrays
function findMedianSortedArrays(nums1, nums2) { if (nums1.length > nums2.length) { return findMedianSortedArrays(nums2, nums1); } const m = nums1.length; const n = nums2.length; let left = 0; let right = m; while (left <= right) { const partitionX = Math.floor((left + right) / 2); const partitionY = Math.floor((m + n + 1) / 2) - partitionX; const maxLeftX = partitionX === 0 ? -Infinity : nums1[partitionX - 1]; const minRightX = partitionX === m ? Infinity : nums1[partitionX]; const maxLeftY = partitionY === 0 ? -Infinity : nums2[partitionY - 1]; const minRightY = partitionY === n ? Infinity : nums2[partitionY]; if (maxLeftX <= minRightY && maxLeftY <= minRightX) { if ((m + n) % 2 === 0) { return (Math.max(maxLeftX, maxLeftY) + Math.min(minRightX, minRightY)) / 2; } else { return Math.max(maxLeftX, maxLeftY); } } else if (maxLeftX > minRightY) { right = partitionX - 1; } else { left = partitionX + 1; } } throw new Error("Input arrays are not sorted."); } const nums1 = [1, 3]; const nums2 = [2]; console.log(findMedianSortedArrays(nums1, nums2)); // Output: 2
10. LeetCode Practice Problems
To further test your understanding and skills in array searching, here are 15 LeetCode problems you can practice:
- 2つの合計
- 回転ソート配列で検索
- 回転ソートされた配列の最小値を見つける
- 2D マトリックスを検索
- ピーク要素の検索
- 範囲を検索
- ソートされた 2 つの配列の中央値
- 配列内の K 番目に大きい要素
- K 個の最も近い要素を検索
- サイズが不明なソートされた配列を検索
- D 日以内に荷物を発送できる能力
- バナナを食べるココ
- 重複する番号を見つける
- 最大 K 個の異なる文字を含む最長の部分文字列
- サブ配列の合計は K に等しい
これらの問題は、広範囲の配列検索テクニックをカバーしており、このブログ投稿で説明されている概念の理解を確実にするのに役立ちます。
結論として、データ構造とアルゴリズムに習熟するには、配列検索テクニックを習得することが重要です。これらのさまざまな方法を理解して実装することで、複雑な問題に取り組み、コードを最適化する準備が整います。各アプローチの時間と空間の複雑さを分析し、問題の特定の要件に基づいて最も適切なものを選択することを忘れないでください。
コーディングと検索を楽しんでください!
The above is the detailed content of Array Searching in DSA using JavaScript: From Basics to Advanced. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

The main uses of JavaScript in web development include client interaction, form verification and asynchronous communication. 1) Dynamic content update and user interaction through DOM operations; 2) Client verification is carried out before the user submits data to improve the user experience; 3) Refreshless communication with the server is achieved through AJAX technology.
