Go Time and Duration | Programming Tutorials
Introduction
This lab aims to test your understanding of Go's time and duration support.
Time
The code below contains examples of how to work with time and duration in Go. However, some parts of the code are missing. Your task is to complete the code to make it work as expected.
- Basic knowledge of Go programming language.
- Familiarity with Go's time and duration support.
$ go run time.go 2012-10-31 15:50:13.793654 +0000 UTC 2009-11-17 20:34:58.651387237 +0000 UTC 2009 November 17 20 34 58 651387237 UTC Tuesday true false false 25891h15m15.142266763s 25891.25420618521 1.5534752523711128e+06 9.320851514226677e+07 93208515142266763 2012-10-31 15:50:13.793654 +0000 UTC 2006-12-05 01:19:43.509120474 +0000 UTC # Next we'll look at the related idea of time relative to # the Unix epoch.
There is the full code below:
// Go offers extensive support for times and durations; // here are some examples. package main import ( "fmt" "time" ) func main() { p := fmt.Println // We'll start by getting the current time. now := time.Now() p(now) // You can build a `time` struct by providing the // year, month, day, etc. Times are always associated // with a `Location`, i.e. time zone. then := time.Date( 2009, 11, 17, 20, 34, 58, 651387237, time.UTC) p(then) // You can extract the various components of the time // value as expected. p(then.Year()) p(then.Month()) p(then.Day()) p(then.Hour()) p(then.Minute()) p(then.Second()) p(then.Nanosecond()) p(then.Location()) // The Monday-Sunday `Weekday` is also available. p(then.Weekday()) // These methods compare two times, testing if the // first occurs before, after, or at the same time // as the second, respectively. p(then.Before(now)) p(then.After(now)) p(then.Equal(now)) // The `Sub` methods returns a `Duration` representing // the interval between two times. diff := now.Sub(then) p(diff) // We can compute the length of the duration in // various units. p(diff.Hours()) p(diff.Minutes()) p(diff.Seconds()) p(diff.Nanoseconds()) // You can use `Add` to advance a time by a given // duration, or with a `-` to move backwards by a // duration. p(then.Add(diff)) p(then.Add(-diff)) }
Summary
This lab tested your ability to work with Go's time and duration support. You learned how to extract various components of a time value, compare two times, compute the length of a duration, and advance a time by a given duration.
? Practice Now: Go Time and Duration Exploration
Want to Learn More?
- ? Learn the latest Go Skill Trees
- ? Read More Go Tutorials
- ? Join our Discord or tweet us @WeAreLabEx
The above is the detailed content of Go Time and Duration | Programming Tutorials. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

The article discusses using table-driven tests in Go, a method that uses a table of test cases to test functions with multiple inputs and outcomes. It highlights benefits like improved readability, reduced duplication, scalability, consistency, and a

The article discusses Go's reflect package, used for runtime manipulation of code, beneficial for serialization, generic programming, and more. It warns of performance costs like slower execution and higher memory use, advising judicious use and best

The article discusses managing Go module dependencies via go.mod, covering specification, updates, and conflict resolution. It emphasizes best practices like semantic versioning and regular updates.
