Math Namespace & BigInt
Math.sqrt i.e sqrt is a part of Math namespace.
// 2 ways to get square root.
Math.sqrt(100); // 10, Method 1
100*(1/2); // 10, Method 2
8*(1/3); // 2, works for cubic root also
Math.max() & Math.min():
Math.max(23,54,12,6,32,98,87,34,11); // 98
// Does type coercion also
Math.min(23,54,12,'6',32,98,87,34,11); // 6
// Does not do parsing
Math.min(23,54,12,'6px',32,98,87,34,11); // NaN
Inbuilt constants on Math object:
Math.PI * (Number.parseFloat('10px')**(2)); // Getting area
Generate a no b/w 1-6:
Math.trunc(Math.random() * 6) 1;
Generatate a random no b/w an upper-lower limit:
const randomInt = (min, max) => Math.floor(Math.random() * (max-min)) 1 min;
randomInt(10,20);
// All of these Math.method() do type coercion.
Math.trunc(25.4); // 25
Math.round(25.4); // 25
Math.floor(25.4); // 25
Math.ceil(25.4); // 26
Math.floor is a better choice for negative numbers.
Math.trunc(-25.4); // -25
Math.floor(-25.4); // -26
// Rounding decimals: .toFixed returns a string, not a number
(2.5).toFixed(0); // '3'
(2.5).toFixed(3); // '2.500'
(2.345).toFixed(2); // '2.35'
// Add a unary sign to convert it to a no.
(2.345).toFixed(2); // 2.35
// Number is a primitive, hence they don't have methods. SO behind the scene, JS will do boxing, i.e transform primitive into a no object, perform the operation and then when operation is finished, transform it back to primitive.
Modular or Remainder Operator:
5 % 2; // 1
8 % 3; // 2
8 / 3; // 2.6666666666666665
// Odd or Even
const isEven = n => n%2 === 0;
isEven(20);
isEven(21);
isEven(22);
Usecase: Used to work with all odd rows, even rows, nth time etc.
Numeric Separators: [ES2021]
Used for representing really large numbers
These are underscores which can be placed between numbers. The engine ignores these underscores, its reduces the confusion for devs.
Ex. const diameter = 287_460_000_000;
diameter; // 287460000000
const price = 342_25;
price; // 34225
const fee1 = 1_500;
const fee2 = 15_00;
fee1 === fee2; // true
Underscore can be placed ONLY between numbers.
It cannot be placed adjacent to a dot of decimal.
It also cannot be placed at the begining or the end of the no.
const PI = 3.14_15;
PI; // 3.1415
All are invalid example of numeric separators
const PI = 3.1415; // Cannot be placed in the begining.
const PI = 3.1415; // Cannot be placed in the end.
const PI = 3_.1415; // Cannot be placed adjacent to a decimal dot.
const PI = 3.1415; // Cannot be placed adjacent to a decimal dot.
const PI = 3._1415; // Two in a row cannot be placed.
Converting Strings to Numbers:
Number('2500'); // 2500
Number('25_00'); // NaN , Hence we can only use when directly numbers are assigned to a variable. Hence, if a no is stored in the string or getting a no from an API, then to avoid error don't use '_' numeric separator.
Similar goes for parseInt i.e anything after _ is discarded as shown below:
parseInt('25_00'); // 25
BigInt
Special type of integers, introduced in ES2020
Numbers are represented internally as 64 bits i.e 64 1s or 0s to represent any number. Only 53 are used to store the digits, remaining are used to store the position of decimal point and the sign. Hence, there is a limit on the size of the number i.e ((2*53) - 1). This is the biggest no which JS can safely represent. The base is 2, because we are working in binary form while storing.
2*53 - 1; // 9007199254740991
Number.MAX_SAFE_INTEGER; // 9007199254740991
Anything larger than this is not safe i.e it cannot be represented accurately. Precision will be lost for numbers larger than this as shown in last digit. Sometimes it might work, whereas sometimes it won't.
Number.MAX_SAFE_INTEGER 1; // 9007199254740992
Number.MAX_SAFE_INTEGER 2; // 9007199254740992
Number.MAX_SAFE_INTEGER 3; // 9007199254740994
Number.MAX_SAFE_INTEGER 4; // 9007199254740996
Incase we get a larger no from an API larger than this, then JS won't be able to deal with it. So to resolve the above issue, BigInt a new primitive data type was introduces in ES2020. This can store integers as large as we want.
An 'n' is added at the end of the no to make it a BigInt. Ex.
const num = 283891738917391283734234324223122313243249821n;
num; // 283891738917391283734234324223122313243249821n
BigInt is JS way of displaying such huge numbers.
Another way using Constructor Fn for creating BigInt number.
const x = BigInt(283891738917391283734234324223122313243249821);
x; // 283891738917391288062871194223849945790676992n
Operations: All arithmetic operators work the same with BigInt;
const x = 100n 100n;
x; // 200n
const x = 10n * 10n;
x; // 100n
Avoid mixing BigInt numbers with regular numbers
const x = 100n;
const y = 10;
z = x*y; // Error
To make it work, use BigInt constructor Fn:
z = x * BigInt(y);
z; // 1000n
Exception to it are comparsion operators & unary operator.
20n > 19; // true
20n === 20; // false, === prevents JS from doing type coercion. Both the LHS & RHS have different primitive types, hence results in 'false'.
typeof 20n; // 'bigint'
typeof 20; // 'number'
20n == 20; // true, as JS does type coercion to compare only the values and not the types by converting BigInt to a regular number.
Same goes for this also: 20n == '20'; // true
Exception:
BigInt number is not converted to string on using operator.
const num = 248923874328974239473829n
"num is huge i.e. " num; // 'num is huge i.e. 248923874328974239473829'
Note:
Math.sqrt doesn't work with BigInt.
During division of BigInts, it discards the decimal part.
10 / 3; // 3.3333333333333335
10n / 3n; // 3n
12n / 3n; // 4n
This new primitive type adds some new capabilities to JS language to make it work with huge no.
The above is the detailed content of Math Namespace & BigInt. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.
