Home Web Front-end JS Tutorial Intro to DSA & Big O Notation

Intro to DSA & Big O Notation

Sep 19, 2024 pm 08:30 PM

Intro to DSA & Big O Notation

Notes to master DSA:

Master DSA to be "eligible" for high paying salaries offered to S/w Ers.
DSA is the major chunk of Software Engineering.
Before writing code, make sure you understand the bigger picture and then drill down into details.
Its all about understanding the concepts visually, and then translating those concepts into code via any l/g as DSA is language agnostic.
Every upcoming concept is somehow linked to previous concepts. Hence, don't hop topics or move forward unless you have mastered the concept thoroughly by practicing it.
When we learn concepts visually, we get deeper understanding of the material which inturn helps us to retain the knowledge for longer duration.
If you follow these advices, you'll have nothing to lose.

Linear DS:
Arrays
LinkedList(LL) & Doubly LL (DLL)
Stack
Queue & Circular Queue

Non-linear DS:
Trees
Graphs
Copy after login

Big O Notation

It is essential to understand this notation for perf comparison of algos.
Its a mathematical way for comparing efficiency of algos.

Time Complexity

The faster the code runs, the lower it will be
V. impt for most of the interviews.

Space Complexity

Considered rarely as compared to time complexity due to low storage cost.
Need to be understood, as an interviewer may ask you from this also.

Three Greek Letters:

  1. Omega
  2. Theta
  3. Omicron i.e Big-O [seen most often]

Cases for algo

  1. Best case [represented using Omega]
  2. Avg case [represented using Theta]
  3. Worst case [represented using Omicron]

Technically there is no best case of avg case Big-O. They are denoted using omega & theta respectively.
We are always measuring worst case.

## O(n): Efficient Code
Proportional
Its simplified by dropping the constant values.
An operation happens 'n' times, where n is passed as an argument as shown below.
Always going to be a straight line having slope 1, as no of operations is proportional to n.
X axis - value of n.
Y axis - no of operations 

// O(n)
function printItems(n){
  for(let i=1; i<=n; i++){
    console.log(i);
  }
}
printItems(9);

// O(n) + O(n) i.e O(2n) operations. As we drop constants, it eventually becomes O(n)
function printItems(n){
  for(let i=0; i<n; i++){
    console.log(i);
  }
  for(let j=0; j<n; j++){
    console.log(j);
  }
}
printItems(10);
Copy after login
## O(n^2):
Nested loops.
No of items which are output in this case are n*n for a 'n' input.
function printItems(n){
  for(let i=0; i<n; i++){
    console.log('\n');
    for(let j=0; j<n; j++){
      console.log(i, j);
    }
  }
}
printItems(4);
Copy after login
## O(n^3):
No of items which are output in this case are n*n*n for a 'n' input.
// O(n*n*n)
function printItems(n){
  for(let i=0; i<n; i++){
    console.log(`Outer Iteration ${i}`);
    for(let j=0; j<n; j++){
      console.log(`  Mid Iteration ${j}`);
      for(let k=0; k<n; k++){
        //console.log("Inner");
        console.log(`    Inner Iteration ${i} ${j} ${k}`);
      }
    }
  }
}
printItems(3);


## Comparison of Time Complexity:
O(n) > O(n*n)


## Drop non-dominants:
function xxx(){
  // O(n*n)
  Nested for loop

  // O(n)
  Single for loop
}
Complexity for the below code will O(n*n) + O(n) 
By dropping non-dominants, it will become O(n*n) 
As O(n) will be negligible as the n value grows. O(n*n) is dominant term, O(n) is non-dominnat term here.
Copy after login
## O(1):
Referred as Constant time i.e No of operations do not change as 'n' changes.
Single operation irrespective of no of operands.
MOST EFFICIENT. Nothing is more efficient than this. 
Its a flat line overlapping x-axis on graph.


// O(1)
function printItems(n){
  return n+n+n+n;
}
printItems(3);


## Comparison of Time Complexity:
O(1) > O(n) > O(n*n)
Copy after login
## O(log n)
Divide and conquer technique.
Partitioning into halves until goal is achieved.

log(base2) of 8 = 3 i.e we are basically saying 2 to what power is 8. That power denotes the no of operations to get to the result.

Also, to put it in another way we can say how many times we need to divide 8 into halves(this makes base 2 for logarithmic operation) to get to the single resulting target item which is 3.

Ex. Amazing application is say for a 1,000,000,000 array size, how many times we need to cut to get to the target item.
log(base 2) 1,000,000,000 = 31 times
i.e 2^31 will make us reach the target item.

Hence, if we do the search in linear fashion then we need to scan for billion items in the array.
But if we use divide & conquer approach, we can find it in just 31 steps.
This is the immense power of O(log n)

## Comparison of Time Complexity:
O(1) > O(log n) > O(n) > O(n*n)
Best is O(1) or O(log n)
Acceptable is O(n)
Copy after login
O(n log n) : 
Used in some sorting Algos.
Most efficient sorting algo we can make unless we are sorting only nums.
Copy after login
Tricky Interview Ques: Different Terms for Inputs.
function printItems(a,b){
  // O(a)
  for(let i=0; i<a; i++){
    console.log(i);
  }
  // O(b)
  for(let j=0; j<b; j++){
    console.log(j);
  }
}
printItems(3,5);

O(a) + O(b) we can't have both variables equal to 'n'. Suppose a is 1 and b is 1bn.
Then both will be very different. Hence, it will eventually be O(a + b) is what can call it.
Similarly if these were nested for loops, then it will become O(a * b)
Copy after login
## Arrays
No reindexing is required in arrays for push-pop operations. Hence both are O(1).
Adding-Removing from end in array is O(1)

Reindexing is required in arrays for shift-unshift operations. Hence, both are O(n) operations, where n is no of items in the array.
Adding-Removing from front in array is O(n)

Inserting anywhere in array except start and end positions:
myArr.splice(indexForOperation, itemsToBeRemoved, ContentTobeInsterted)
Remaining array after the items has to be reindexed.
Hence, it will be O(n) and not O(0.5 n) as Big-O always meassures worst case, and not avg case. 0.5 is constant, hence its droppped.
Same is applicable for removing an item from an array also as the items after it has to be reindexed.


Finding an item in an array:
if its by value: O(n)
if its by index: O(1)

Select a DS based on the use-case.
For index based, array will be a great choice.
If a lot of insertion-deletion is perform in the begin, then use some other DS as reindexing will make it slow.
Copy after login

Comparison of Time Complexity for n=100:

O(1) = 1
O(log 100) = 7
O(100) = 100
O(n^2) = 10,000

Comparison of Time Complexity for n=1000:

O(1) = 1
O(log 1000) = ~10
O(1000) = 1000
O(1000*1000) = 1,000,000

Mainly we will focus on these 4:
Big O(n*n): Nested Loops
Big O(n): Proportional
Big O(log n): Divide & conquer
Big O(1): Constant

O(n!) usually happens when we deliberately write bad code.
O(n*n) is horrible Algo
O(n log n) is acceptable and used by certain sorting algos
O(n) : Acceptable
O(log n), O(1) : Best

Space complexity is almost same for all DS i.e O(n).
Space complexity will vary from O(n) to O(log n) or O(1) with sorting algos

Time complexity is what varies based on algo

Best time complexity for sorting other than numbers like string is O(n log n) which is in Quick, Merge, Time, heap sorts.

Best way to apply your learning is to code as much as you can.

Selecting which DS to choose in which problem statement based on Pros-Cons of each DS.

For more info, refer to: bigocheatsheet.com

The above is the detailed content of Intro to DSA & Big O Notation. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1243
24
Demystifying JavaScript: What It Does and Why It Matters Demystifying JavaScript: What It Does and Why It Matters Apr 09, 2025 am 12:07 AM

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

The Evolution of JavaScript: Current Trends and Future Prospects The Evolution of JavaScript: Current Trends and Future Prospects Apr 10, 2025 am 09:33 AM

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

JavaScript Engines: Comparing Implementations JavaScript Engines: Comparing Implementations Apr 13, 2025 am 12:05 AM

Different JavaScript engines have different effects when parsing and executing JavaScript code, because the implementation principles and optimization strategies of each engine differ. 1. Lexical analysis: convert source code into lexical unit. 2. Grammar analysis: Generate an abstract syntax tree. 3. Optimization and compilation: Generate machine code through the JIT compiler. 4. Execute: Run the machine code. V8 engine optimizes through instant compilation and hidden class, SpiderMonkey uses a type inference system, resulting in different performance performance on the same code.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

JavaScript: Exploring the Versatility of a Web Language JavaScript: Exploring the Versatility of a Web Language Apr 11, 2025 am 12:01 AM

JavaScript is the core language of modern web development and is widely used for its diversity and flexibility. 1) Front-end development: build dynamic web pages and single-page applications through DOM operations and modern frameworks (such as React, Vue.js, Angular). 2) Server-side development: Node.js uses a non-blocking I/O model to handle high concurrency and real-time applications. 3) Mobile and desktop application development: cross-platform development is realized through ReactNative and Electron to improve development efficiency.

How to Build a Multi-Tenant SaaS Application with Next.js (Frontend Integration) How to Build a Multi-Tenant SaaS Application with Next.js (Frontend Integration) Apr 11, 2025 am 08:22 AM

This article demonstrates frontend integration with a backend secured by Permit, building a functional EdTech SaaS application using Next.js. The frontend fetches user permissions to control UI visibility and ensures API requests adhere to role-base

Building a Multi-Tenant SaaS Application with Next.js (Backend Integration) Building a Multi-Tenant SaaS Application with Next.js (Backend Integration) Apr 11, 2025 am 08:23 AM

I built a functional multi-tenant SaaS application (an EdTech app) with your everyday tech tool and you can do the same. First, what’s a multi-tenant SaaS application? Multi-tenant SaaS applications let you serve multiple customers from a sing

From C/C   to JavaScript: How It All Works From C/C to JavaScript: How It All Works Apr 14, 2025 am 12:05 AM

The shift from C/C to JavaScript requires adapting to dynamic typing, garbage collection and asynchronous programming. 1) C/C is a statically typed language that requires manual memory management, while JavaScript is dynamically typed and garbage collection is automatically processed. 2) C/C needs to be compiled into machine code, while JavaScript is an interpreted language. 3) JavaScript introduces concepts such as closures, prototype chains and Promise, which enhances flexibility and asynchronous programming capabilities.

See all articles