Creating a Testable Facade in Laravel
Here's a cheat sheet on how to make your simple service class more useful by adding dependency injection, a facade, and a way to easily swap in a fake.
The skeleton is simple:
- The original service class
- Create a contract the service class abides by
- In a service provider, register the service class in the container
- Create a facade
- Create a fake implementation of the contract that can be swapped for testing
The original service class
Here's our original service class that we are starting with (apologies for not having a compelling example, but it isn't really necessary to contrive one for this).
<?php namespace App\Foo; class FooService { public function foo(): string { return 'bar'; } public function fizz(): string { return 'buzz'; } }
The contract
First, we should create a contract so we can ensure that our eventual fake and our original service both meet expectations. As well as any future implementations.
<?php namespace App\Foo\Contracts; interface Foo { public function foo(): string; public function fizz(): string; }
Don't forget to make sure the service implements it.
<?php namespace App; use App\Foo\Contracts\Foo; class FooService implements Foo { // ... }
Binding to the container
Next, we should bind the concrete implementation to the contract in our service provider.
<?php namespace App\Providers; use App\Foo\Contracts\Foo; use App\FooService; use Illuminate\Support\ServiceProvider; class AppServiceProvider extends ServiceProvider { /** * Register any application services. */ public function register(): void { $this->app->bind(Foo::class, FooService::class); } // ... }
The facade
Now, we can create our facade class.
<?php namespace App\Foo\Facades; use Illuminate\Support\Facades\Facade; /** * @method static string foo(): string * @method static string fizz(): string */ class Foo extends Facade { protected static function getFacadeAccessor(): string { return \App\Foo\Contracts\Foo::class; } }
The facade simply needs the name of the binding it will pull from the container to be returned from getFacadeAccessor. In our case, that's the name of the contract that currently has our service bound to it.
Note that if you want IDE support, you'll have to re-define the method signatures in the doc block above the class.
At this point, we can use our facade.
Usage
<?php namespace App\Http\Controllers; use App\Foo\Facades\Foo; class FooController extends Controller { public function index() { return response()->json([ 'foo' => Foo::foo(), ]); } }
Alternatively, we can also inject it as a dependency.
<?php namespace App\Http\Controllers; use App\Foo\Contracts; class FooController extends Controller { public function __construct(protected Foo $foo) {} public function index() { return response()->json([ 'foo' => $this->foo->foo(), ]); } }
Faking the facade
Laravel often offers a neat way to easily fake its facades, e.g. Event::fake(). We can implement this ourselves.
All we have to do is create the fake implementation of our contract, then add the fake method to our facade.
<?php namespace App\Foo; use App\Foo\Contracts\Foo; class FakeFooService implements Foo { public function __construct(public Foo $actual) {} public function foo(): string { return 'fake'; } public function fizz(): string { return 'very fake'; } }
In our fake implementation, we also create a public reference to the "actual" concrete class.
And here is our facade fake implementation. You can see we utilize that reference to actual.
<?php namespace App\Foo\Facades; use App\Foo\FakeFooService; use Illuminate\Support\Facades\Facade; /** * @method static string foo(): string * @method static string fizz(): string */ class Foo extends Facade { public static function fake() { $actual = static::isFake() ? static::getFacadeRoot()->actual : static::getFacadeRoot(); tap(new FakeFooService($actual), function ($fake) { static::swap($fake); }); } // ... }
A basic test
Now let's write a quick test that hits the controller example we created above.
<?php namespace Tests\Feature; use App\Foo\Facades\Foo; use Illuminate\Testing\Fluent\AssertableJson; use Tests\TestCase; class FooTest extends TestCase { public function test_foo(): void { $response = $this->get('/'); $response->assertJson(fn (AssertableJson $json) => $json->where('foo', 'bar')); } public function test_fake_foo(): void { Foo::fake(); $response = $this->get('/'); $response->assertJson(fn (AssertableJson $json) => $json->where('foo', 'fake')); } }
The tests are not useful but they show how easy it is to use our fake. In test_fake_foo we get foo=fake while test_foo returns foo=bar.
Taking testing further
The fun thing about fakes is that in our fake implementation, we can add extra methods to test anything we may find useful. For example, we could slap a counter in our fake's foo method that increments every time we call foo. Then we could add a method called assertFooCount where we can assert that the method was called as many times as we are expecting.
<?php namespace App\Foo; use App\Foo\Contracts\Foo; use Illuminate\Testing\Assert; class FakeFooService implements Foo { public int $fooCount = 0; public function __construct(public Foo $actual) {} public function foo(): string { $this->fooCount++; return 'fake'; } public function fizz(): string { return 'very fake'; } public function assertFooCount(int $count) { Assert::assertSame($this->fooCount, $count); } }
As you can see we use Laravel's IlluminateTestingAssert to make the assertion. Then our test can look like this.
public function test_incrementor(): void { Foo::fake(); Foo::foo(); Foo::foo(); Foo::foo(); Foo::assertFooCount(3); // pass! }
That's it!
Not everything needs a facade, but when you are building tools/packages that are used internally, a facade is often a strong pattern to rely upon.
Here's the repo with all the code: https://github.com/ClintWinter/laravel-facade-example
The above is the detailed content of Creating a Testable Facade in Laravel. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











There are four main error types in PHP: 1.Notice: the slightest, will not interrupt the program, such as accessing undefined variables; 2. Warning: serious than Notice, will not terminate the program, such as containing no files; 3. FatalError: the most serious, will terminate the program, such as calling no function; 4. ParseError: syntax error, will prevent the program from being executed, such as forgetting to add the end tag.

PHP and Python each have their own advantages, and choose according to project requirements. 1.PHP is suitable for web development, especially for rapid development and maintenance of websites. 2. Python is suitable for data science, machine learning and artificial intelligence, with concise syntax and suitable for beginners.

In PHP, password_hash and password_verify functions should be used to implement secure password hashing, and MD5 or SHA1 should not be used. 1) password_hash generates a hash containing salt values to enhance security. 2) Password_verify verify password and ensure security by comparing hash values. 3) MD5 and SHA1 are vulnerable and lack salt values, and are not suitable for modern password security.

PHP is widely used in e-commerce, content management systems and API development. 1) E-commerce: used for shopping cart function and payment processing. 2) Content management system: used for dynamic content generation and user management. 3) API development: used for RESTful API development and API security. Through performance optimization and best practices, the efficiency and maintainability of PHP applications are improved.

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

HTTP request methods include GET, POST, PUT and DELETE, which are used to obtain, submit, update and delete resources respectively. 1. The GET method is used to obtain resources and is suitable for read operations. 2. The POST method is used to submit data and is often used to create new resources. 3. The PUT method is used to update resources and is suitable for complete updates. 4. The DELETE method is used to delete resources and is suitable for deletion operations.

In PHPOOP, self:: refers to the current class, parent:: refers to the parent class, static:: is used for late static binding. 1.self:: is used for static method and constant calls, but does not support late static binding. 2.parent:: is used for subclasses to call parent class methods, and private methods cannot be accessed. 3.static:: supports late static binding, suitable for inheritance and polymorphism, but may affect the readability of the code.

PHP handles file uploads through the $\_FILES variable. The methods to ensure security include: 1. Check upload errors, 2. Verify file type and size, 3. Prevent file overwriting, 4. Move files to a permanent storage location.
