Counting Unique Values per Group in Pandas with nunique
In pandas, counting unique values in a group is possible using the nunique() method. This is particularly useful when working with data where you need to determine the number of distinct values within specific categories or groups.
Problem:
Consider a DataFrame with the following data:
ID | domain |
---|---|
123 | vk.com |
123 | vk.com |
123 | twitter.com |
456 | vk.com |
456 | facebook.com |
456 | vk.com |
456 | google.com |
789 | twitter.com |
789 | vk.com |
The task is to count the unique IDs for each domain in this DataFrame.
Solution:
To count unique values per group, use the nunique() method with the desired grouping columns. In this case, the domain column represents the groups:
<code class="python">df = df.groupby('domain')['ID'].nunique() print(df)</code>
Output:
domain | count |
---|---|
facebook.com | 1 |
google.com | 1 |
twitter.com | 2 |
vk.com | 3 |
Additional Considerations:
The above is the detailed content of How to Count Unique Values Within Groups Using nunique() in Pandas?. For more information, please follow other related articles on the PHP Chinese website!