Home Backend Development Python Tutorial How to Speed Up Matplotlib Plotting to Enhance Performance?

How to Speed Up Matplotlib Plotting to Enhance Performance?

Oct 19, 2024 pm 08:48 PM

How to Speed Up Matplotlib Plotting to Enhance Performance?

Why is Matplotlib So Slow?

When evaluating Python plotting libraries, it's important to consider performance. Matplotlib, a widely used library, can seem sluggish, raising questions about speeding it up or exploring alternative options. Let's dive into the issue and explore possible solutions.

The provided example showcases a plot with multiple subplots and data updates. With Matplotlib, this process involves redrawing everything, including axes boundaries and tick labels, resulting in slow performance.

Understanding the Bottlenecks

Two key factors contribute to the slowness:

  1. Excessive Redrawing: Matplotlib's fig.canvas.draw() function redraws the entire figure, even when only a small portion needs updating.
  2. Abundant Tick Labels: A large number of tick labels and subplots can significantly burden the drawing process.

Optimizing with Blitting

To address these bottlenecks, consider using blitting. Blitting involves updating only specific parts of the figure, reducing the rendering time. However, backend-specific code is needed for efficient implementation, which may require embedding Matplotlib plots within a GUI toolkit.

GUI-Neutral Blitting

A GUI-neutral blitting technique can provide reasonable performance without backend dependency:

  1. Capture Background: Before animation, capture the background of each subplot to restore later.
  2. Update and Draw: For each frame, update the data and artist of the lines, restoring the background and blitting the updated portion.
  3. Avoid Redraw: Use fig.canvas.blit(ax.bbox) instead of fig.canvas.draw() to update only the necessary area.

Example Implementation:

<code class="python">import matplotlib.pyplot as plt
import numpy as np

x = np.arange(0, 2*np.pi, 0.1)
y = np.sin(x)

fig, axes = plt.subplots(nrows=6)

styles = ['r-', 'g-', 'y-', 'm-', 'k-', 'c-']
def plot(ax, style):
    return ax.plot(x, y, style, animated=True)[0]

lines = [plot(ax, style) for ax, style in zip(axes, styles)]

# Capture Background
backgrounds = [fig.canvas.copy_from_bbox(ax.bbox) for ax in axes]

for i in xrange(1, 2000):
    for j, (line, ax, background) in enumerate(zip(lines, axes, backgrounds), start=1):
        fig.canvas.restore_region(background)
        line.set_ydata(np.sin(j*x + i/10.0))
        ax.draw_artist(line)
        fig.canvas.blit(ax.bbox)</code>
Copy after login

Animation Module

Recent Matplotlib versions include an animations module, which simplifies blitting:

<code class="python">import matplotlib.pyplot as plt
import matplotlib.animation as animation

def animate(i):
    for j, line in enumerate(lines, start=1):
        line.set_ydata(np.sin(j*x + i/10.0))

ani = animation.FuncAnimation(fig, animate, xrange(1, 200), interval=0, blit=True)</code>
Copy after login

The above is the detailed content of How to Speed Up Matplotlib Plotting to Enhance Performance?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot Article

Hot Article

Hot Article Tags

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

How Do I Use Beautiful Soup to Parse HTML?

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Image Filtering in Python

How to Download Files in Python How to Download Files in Python Mar 01, 2025 am 10:03 AM

How to Download Files in Python

Intro to Flask: Adding a Contact Page Intro to Flask: Adding a Contact Page Feb 28, 2025 am 10:03 AM

Intro to Flask: Adding a Contact Page

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

How to Use Python to Find the Zipf Distribution of a Text File

How to Work With PDF Documents Using Python How to Work With PDF Documents Using Python Mar 02, 2025 am 09:54 AM

How to Work With PDF Documents Using Python

How to Cache Using Redis in Django Applications How to Cache Using Redis in Django Applications Mar 02, 2025 am 10:10 AM

How to Cache Using Redis in Django Applications

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

How to Perform Deep Learning with TensorFlow or PyTorch?

See all articles