Home Backend Development Python Tutorial Why your FastAPI (or Flask) App performs poorly with high loads

Why your FastAPI (or Flask) App performs poorly with high loads

Oct 21, 2024 am 06:14 AM

Why your FastAPI (or Flask) App performs poorly with high loads
First of all, apologies for the title bait ?, but I figured this issue out last night and I am still under the effects of the dopamine rush. I just have to share this.

This text is intended for entry-level developers or Data scientists (not senior Python software engineers) and I will write this as a narrative, or in other words the chronological sequence of events as they happened, instead of a "technical paper (structured in problem, solution, discussion). I like this approach because it shows how things happen in real life.

Initial Considerations

These tests were done on GCP Cloud Run using a single processor, and 512M RAM machine, and we used Locust, an incredible tool (for Python, LoL).

Also, if you are already having performance issues on single requests on Postman, I strongly suggest you take a look at this repo dedicated to increase FastAPI performance from kisspeter and this one from LoadForge.

First Test Round

Using a single request in Postman, after Cloud Run started, I was getting around 400ms response time. Not the best, but totally within an acceptable range.

Our load test is quite simple: reads, writes and deletes in one table ( or GETs, POSTs and DELETEs to the API endpoints). 75% reads, 20% writes, 5% deletes. We run it with 100 concurrent users for 10 min.

Why your FastAPI (or Flask) App performs poorly with high loads

At the end we got a 2s average response time, but the most disturbing part is that the avg time was still increasing when the test ended, so it is very likely the number would still grow more before ( and if ) it stabilizes.

I tried to run it locally on my machine, but to my surprise, the response time in Postman was 14ms only. However, when running the load test for 500 concurrent users, the problem appeared again ? ...

Why your FastAPI (or Flask) App performs poorly with high loads

By the end of the test, the response time was about 1.6s and still increasing, but some glitch happened, and the 95th percentile sky rocketed (and ruined the graph =( ). Here are the stats:

Why your FastAPI (or Flask) App performs poorly with high loads

Now, why does a server that responds with 14ms suddenly go up to 1.6 seconds with only 500 concurrent users?

My machine is a core i7, 6 cores, 2.6GHz, 16Gb RAM, SSD. It should not happen.

What gave me a good hint was my processor and memory logs... They were extremely low!

This probably means my server is not using all the resources from my machine. And guess what? It was not. Let me present to you a concept the vast majority of developers forget when deploying FastAPI or Flask applications to prod: the process worker.

As per getorchestra.io:

Understanding Server Workers

Server workers are essentially processes that run your application code. Each worker can handle one request at a time. If you have multiple workers, you can process multiple requests simultaneously, enhancing the throughput of your application.

Why Server Workers are Important

  • Concurrency: They allow concurrent handling of requests, leading to better utilization of server resources and faster response times.
  • Isolation: Each worker is an independent process. If one worker fails, it doesn't affect the others, ensuring better stability.
  • Scalability: Adjusting the number of workers can easily scale your application to handle varying loads.

In practice, all you need to do is add the optional --workers param to your server initialization line. The calculation of how many workers you need depends a lot on the server you are running your application and the behavior of your application: especially when it comes to memory consumption.

After doing it, I got much better results locally for 16 workers, converging to 90ms (for 500 concurrent users) after 10 min:

Why your FastAPI (or Flask) App performs poorly with high loads

Final Test Round

After configuring the microservices with the appropriate number of workers (I used 4 for my single processor Cloud Run instance), my results were incredibly better in GCP:

Why your FastAPI (or Flask) App performs poorly with high loads

The final value converges to 300ms at the end of the test in the GCP server, which is at least acceptable. ?

The above is the detailed content of Why your FastAPI (or Flask) App performs poorly with high loads. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

What are regular expressions? What are regular expressions? Mar 20, 2025 pm 06:25 PM

Regular expressions are powerful tools for pattern matching and text manipulation in programming, enhancing efficiency in text processing across various applications.

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

What are some popular Python libraries and their uses? What are some popular Python libraries and their uses? Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

How to dynamically create an object through a string and call its methods in Python? How to dynamically create an object through a string and call its methods in Python? Apr 01, 2025 pm 11:18 PM

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

See all articles