Table of Contents
Peak-Finding Algorithm for Python/SciPy
Problem Statement
Existing Peak-Finding Functions in Python/SciPy
Understanding the find_peaks Parameters
Emphasis on Prominence
Example Application: Frequency-Varying Sinusoid
Code Demonstration
Home Backend Development Python Tutorial How to Effectively Utilize the find_peaks Function for Accurate Peak Identification in Python/SciPy?

How to Effectively Utilize the find_peaks Function for Accurate Peak Identification in Python/SciPy?

Oct 22, 2024 pm 07:26 PM

How to Effectively Utilize the find_peaks Function for Accurate Peak Identification in Python/SciPy?

Peak-Finding Algorithm for Python/SciPy

Problem Statement

The task of identifying peaks arises in various applications, ranging from finding peaks in Fourier transforms (FFTs) to extracting peaks from 2D arrays. A common challenge is to distinguish true peaks from noise-induced fluctuations.

Existing Peak-Finding Functions in Python/SciPy

Instead of implementing a peak-finding algorithm from scratch, consider utilizing the scipy.signal.find_peaks function. This function provides options to filter and identify peaks based on specific criteria.

Understanding the find_peaks Parameters

To harness the power of find_peaks effectively, it's crucial to understand its parameters:

  • width: Minimum width of a peak.
  • threshold: Minimum difference between peak and its neighbors.
  • distance: Minimum distance between consecutive peaks.
  • prominence: Minimum height necessary to descend from a peak to reach higher terrain.

Emphasis on Prominence

Of all the parameters, prominence stands out as the most effective in distinguishing true peaks from noise. Its definition involves the minimum vertical descent required to reach a higher peak.

Example Application: Frequency-Varying Sinusoid

To illustrate its utility, consider a frequency-varying sinusoid contaminated with noise. The ideal solution would identify the peaks accurately without succumbing to spurious noise peaks.

Code Demonstration

The following code demonstrates how to use the find_peaks function with various parameter combinations:

<code class="python">import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import find_peaks

# Generate signal
x = np.sin(2*np.pi*(2**np.linspace(2,10,1000))*np.arange(1000)/48000) + np.random.normal(0, 1, 1000) * 0.15

# Find peaks using different parameters
peaks, _ = find_peaks(x, distance=20)
peaks2, _ = find_peaks(x, prominence=1)
peaks3, _ = find_peaks(x, width=20)
peaks4, _ = find_peaks(x, threshold=0.4)

# Plot results
plt.subplot(2, 2, 1)
plt.plot(peaks, x[peaks], "xr"); plt.plot(x); plt.legend(['distance'])
plt.subplot(2, 2, 2)
plt.plot(peaks2, x[peaks2], "ob"); plt.plot(x); plt.legend(['prominence'])
plt.subplot(2, 2, 3)
plt.plot(peaks3, x[peaks3], "vg"); plt.plot(x); plt.legend(['width'])
plt.subplot(2, 2, 4)
plt.plot(peaks4, x[peaks4], "xk"); plt.plot(x); plt.legend(['threshold'])
plt.show()</code>
Copy after login

As observed from the results, using prominence (the blue line in the second subplot) effectively isolates the true peaks, while distance, width, and threshold offer subpar performance in the presence of noise.

The above is the detailed content of How to Effectively Utilize the find_peaks Function for Accurate Peak Identification in Python/SciPy?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

How to dynamically create an object through a string and call its methods in Python? How to dynamically create an object through a string and call its methods in Python? Apr 01, 2025 pm 11:18 PM

In Python, how to dynamically create an object through a string and call its methods? This is a common programming requirement, especially if it needs to be configured or run...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to get news data bypassing Investing.com's anti-crawler mechanism? How to get news data bypassing Investing.com's anti-crawler mechanism? Apr 02, 2025 am 07:03 AM

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

See all articles