Applying a Function with Arguments to a Pandas Series
Problem:
You need to apply a function to a pandas series with additional arguments. However, the pandas apply() method only accepts a function with a single argument.
Solution:
Newer Versions of Pandas (Post-October 2017):
pandas apply() has been updated to support positional and keyword arguments. To pass parameters, use the following syntax:
<code class="python">my_series.apply(your_function, args=(param1, param2, ...), extra_kw=arg1)</code>
Older Versions of Pandas:
Create a partial function using functools.partial(func, *args, **kwargs) to bind additional arguments to your function:
<code class="python">add_3 = functools.partial(operator.add, 3) my_series.apply(add_3)</code>
Pass a lambda function that incorporates the additional arguments:
<code class="python">my_series.apply(lambda x: your_func(x, arg1, arg2, ...))</code>
Define a custom function that accepts all necessary arguments, including the elements of the series as the first parameter:
<code class="python">def my_custom_func(x, arg1, arg2, ...): return ... my_series.apply(my_custom_func, args=(arg1, arg2, ...))</code>
The above is the detailed content of How to Apply a Function with Arguments to a Pandas Series?. For more information, please follow other related articles on the PHP Chinese website!