Passing Additional Arguments to apply() in Python Pandas
Applying user-defined functions to Pandas series often requires passing additional arguments. While early versions of Pandas did not allow this, newer versions provide support for argument passing.
Updated Approach (Pandas >= 1.0)
As of Pandas 1.0 and later, you can directly pass extra arguments using the apply() method.
<code class="python">my_series.apply(your_function, args=(2, 3, 4), extra_kw=1)</code>
Arguments passed using args are added after the series element, while keyword arguments can be passed using extra_kw.
Workaround for Older Versions
For versions prior to Pandas 1.0:
Method 1: Using functools.partial
This method allows you to create a partially applied function that binds any desired arguments.
<code class="python">import functools import operator add_3 = functools.partial(operator.add, 3) my_series.apply(add_3)</code>
Method 2: Using a Lambda Function
Lambda functions can also be used to pass arguments.
<code class="python">my_series.apply((lambda x: your_func(a, b, c, d, ..., x)))</code>
The above is the detailed content of How to Pass Additional Arguments to apply() in Python Pandas?. For more information, please follow other related articles on the PHP Chinese website!