Home > Backend Development > Python Tutorial > How to Count Distinct Values by Group in Pandas?

How to Count Distinct Values by Group in Pandas?

Linda Hamilton
Release: 2024-10-23 13:23:01
Original
718 people have browsed it

How to Count Distinct Values by Group in Pandas?

Pandas Equivalent: Distinct Count by Group

When using Pandas as a database alternative, it's often necessary to perform complex operations like distinct counting by group. In this case, we want to count the number of distinct clients per year month.

In SQL, this can be achieved using the count(distinct) aggregate function. However, Pandas provides a slightly different syntax for this operation.

To count the distinct clients per year month in Pandas, we can use the following code:

<code class="python">table.groupby('YEARMONTH').CLIENTCODE.nunique()</code>
Copy after login

The groupby() function splits the DataFrame into groups based on the specified column (YEARMONTH in this case). The nunique() function then counts the number of unique values within each group.

Here's an example to illustrate:

<code class="python">import pandas as pd

# Create a DataFrame with sample data
data = {
    'YEARMONTH': ['201301', '201301', '201301', '201302', '201302', '201302', '201302'],
    'CLIENTCODE': [1, 1, 2, 1, 2, 2, 3]
}
table = pd.DataFrame(data)

# Count distinct clients per year month
result = table.groupby('YEARMONTH').CLIENTCODE.nunique()

print(result)</code>
Copy after login

Output:

YEARMONTH
201301    2
201302    3
Copy after login

As you can see, the result matches the expected output from the SQL query.

The above is the detailed content of How to Count Distinct Values by Group in Pandas?. For more information, please follow other related articles on the PHP Chinese website!

source:php
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template