The journey to convert nested JSON structures into structured Pandas DataFrames can be daunting, but with the right tools and techniques, it becomes a seamless task. Let's explore the options available for this transformation.
JSON Normalization: A Straightforward Approach
json_normalize provides a powerful solution for flattening nested JSON objects. As we embark on this approach:
<code class="python">import json with open('myJson.json') as data_file: data = json.load(data_file) df = pd.json_normalize(data, 'locations', ['date', 'number', 'name'], record_prefix='locations_') print (df)</code>
Output:
locations_arrTime locations_arrTimeDiffMin locations_depTime \ 0 06:32 1 06:37 1 06:40 2 08:24 1 locations_depTimeDiffMin locations_name locations_platform \ 0 0 Spital am Pyhrn Bahnhof 2 1 0 Windischgarsten Bahnhof 2 2 Linz/Donau Hbf 1A-B locations_stationIdx locations_track number name date 0 0 R 3932 R 3932 01.10.2016 1 1 R 3932 01.10.2016 2 22 R 3932 01.10.2016
Parsing Name and Grouping for Concatenation
However, if flattening is not your ultimate goal, you can embrace an alternative approach:
<code class="python">df = pd.read_json("myJson.json") df.locations = pd.DataFrame(df.locations.values.tolist())['name'] df = df.groupby(['date','name','number'])['locations'].apply(','.join).reset_index() print (df)</code>
Output:
date name locations 0 2016-01-10 R 3932 Spital am Pyhrn Bahnhof,Windischgarsten Bahnho...
This technique enables you to concatenate the locations without compromising the nesting structure.
The above is the detailed content of How to Convert Nested JSON Structures into Structured Pandas DataFrames?. For more information, please follow other related articles on the PHP Chinese website!