Home > Backend Development > Python Tutorial > How to split a column of tuples into separate columns in a Pandas dataframe?

How to split a column of tuples into separate columns in a Pandas dataframe?

DDD
Release: 2024-10-25 02:42:02
Original
802 people have browsed it

How to split a column of tuples into separate columns in a Pandas dataframe?

How to Extract Tuples from Pandas Dataframe Columns

Problem:

In a Pandas dataframe, it is common to have columns containing tuples. However, working with these tuples can be cumbersome. To facilitate analysis, it is often desirable to split these columns into multiple columns containing the individual tuple elements.

Solution:

To convert a column of tuples into separate columns, follow these steps:

  1. Convert the column to a list of tuples using the tolist() method:

    <code class="python">column_list = column.tolist()</code>
    Copy after login
  2. Create a new dataframe from the list of tuples:

    <code class="python">new_df = pd.DataFrame(column_list, index=dataframe.index)</code>
    Copy after login
  3. Assign the new dataframe as new columns to the original dataframe:

    <code class="python">dataframe[['column_a', 'column_b']] = new_df[['0', '1']]</code>
    Copy after login

Example:

Consider the following dataframe:

<code class="python">>>> d1
   y norm test  y norm train  len(y_train)  len(y_test)  \
0    64.904368    116.151232          1645          549
1    70.852681    112.639876          1645          549

                                    SVR RBF  \
0   (35.652207342877873, 22.95533537448393)
1  (39.563683797747622, 27.382483096332511)

                                        LCV  \
0  (19.365430594452338, 13.880062435173587)
1  (19.099614489458364, 14.018867136617146)

                                   RIDGE CV  \
0  (4.2907610988480362, 12.416745648065584)
1    (4.18864306788194, 12.980833914392477)

                                         RF  \
0   (9.9484841581029428, 16.46902345373697)
1  (10.139848213735391, 16.282141345406522)

                                           GB  \
0  (0.012816232716538605, 15.950164822266007)
1  (0.012814519804493328, 15.305745202851712)

                                             ET DATA
0  (0.00034337162272515505, 16.284800366214057)  j2m
1  (0.00024811554516431878, 15.556506191784194)  j2m
>>></code>
Copy after login

To split the LCV column into individual columns LCV-a and LCV-b, you can use the following code:

<code class="python">df[['LCV-a', 'LCV-b']] = pd.DataFrame(df['LCV'].tolist(), index=df.index)</code>
Copy after login

The resulting dataframe will be:

<code class="python">>>> df
   y norm test  y norm train  len(y_train)  len(y_test)  \
0    64.904368    116.151232          1645          549
1    70.852681    112.639876          1645          549

                                    SVR RBF  \
0   (35.652207342877873, 22.95533537448393)
1  (39.563683797747622, 27.382483096332511)

                                        LCV-a  LCV-b  \
0  19.365430594452338  13.880062435173587
1  19.099614489458364  14.018867136617146

                                   RIDGE CV  \
0  (4.2907610988480362, 12.416745648065584)
1    (4.18864306788194, 12.980833914392477)

                                         RF  \
0   (9.9484841581029428, 16.46902345373697)
1  (10.139848213735391, 16.282141345406522)

                                           GB  \
0  (0.012816232716538605, 15.950164822266007)
1  (0.012814519804493328, 15.305745202851712)

                                             ET DATA
0  (0.00034337162272515505, 16.284800366214057)  j2m
1  (0.00024811554516431878, 15.556506191784194)  j2m</code>
Copy after login

The above is the detailed content of How to split a column of tuples into separate columns in a Pandas dataframe?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template