Adding Multiple Columns to Pandas Dataframes Simultaneously: A Step-by-Step Guide
In the endeavor of data analysis, it is often necessary to augment existing Pandas dataframes with additional columns. To simplify this process, we seek a streamlined approach to adding multiple columns at once.
Initial Misconception: Assigning Values to Multiple Columns
Intuitively, one might expect the following syntax to accomplish the task:
<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]</code>
However, this approach encounters a hurdle due to Pandas' requirement for the right-hand side of column-list assignments (df[[new1, new2]] = ...) to be a DataFrame.
Working Solutions: Assigning Multiple Columns
Undeterred, we navigate various techniques to achieve our goal:
1. Iterator Unpacking for Simultaneous Assignments
<code class="python">df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3</code>
2. Expanding a Single Row with DataFrame()
<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>
3. Concatenation with Temporary DataFrames
<code class="python">df = pd.concat([ df, pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3']) ], axis=1)</code>
4. Joining with Temporary DataFrames
<code class="python">df = df.join(pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3']))</code>
5. Dictionary-Based Temporary DataFrames
<code class="python">df = df.join(pd.DataFrame({'column_new_1': np.nan, 'column_new_2': 'dogs', 'column_new_3': 3}, index=df.index))</code>
6. .assign() for Multiple Column Arguments (Python 3.6 )
<code class="python">df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)</code>
7. Create Columns, Assign Values Separately
<code class="python">df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3</code>
8. Separate Assignments
While it lacks the elegance of other solutions, this approach remains straightforward:
<code class="python">df['column_new_1'] = np.nan df['column_new_2'] = 'dogs' df['column_new_3'] = 3</code>
The above is the detailed content of How to Add Multiple Columns to a Pandas DataFrame Simultaneously?. For more information, please follow other related articles on the PHP Chinese website!