Home > Backend Development > Python Tutorial > How to Add Multiple Columns to a Pandas DataFrame Simultaneously?

How to Add Multiple Columns to a Pandas DataFrame Simultaneously?

Susan Sarandon
Release: 2024-10-25 08:29:02
Original
819 people have browsed it

How to Add Multiple Columns to a Pandas DataFrame Simultaneously?

Adding Multiple Columns to Pandas Dataframes Simultaneously: A Step-by-Step Guide

In the endeavor of data analysis, it is often necessary to augment existing Pandas dataframes with additional columns. To simplify this process, we seek a streamlined approach to adding multiple columns at once.

Initial Misconception: Assigning Values to Multiple Columns

Intuitively, one might expect the following syntax to accomplish the task:

<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]</code>
Copy after login

However, this approach encounters a hurdle due to Pandas' requirement for the right-hand side of column-list assignments (df[[new1, new2]] = ...) to be a DataFrame.

Working Solutions: Assigning Multiple Columns

Undeterred, we navigate various techniques to achieve our goal:

1. Iterator Unpacking for Simultaneous Assignments

<code class="python">df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3</code>
Copy after login

2. Expanding a Single Row with DataFrame()

<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>
Copy after login

3. Concatenation with Temporary DataFrames

<code class="python">df = pd.concat([ df, pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3']) ], axis=1)</code>
Copy after login

4. Joining with Temporary DataFrames

<code class="python">df = df.join(pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index, columns=['column_new_1', 'column_new_2', 'column_new_3']))</code>
Copy after login

5. Dictionary-Based Temporary DataFrames

<code class="python">df = df.join(pd.DataFrame({'column_new_1': np.nan, 'column_new_2': 'dogs', 'column_new_3': 3}, index=df.index))</code>
Copy after login

6. .assign() for Multiple Column Arguments (Python 3.6 )

<code class="python">df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)</code>
Copy after login

7. Create Columns, Assign Values Separately

<code class="python">df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3</code>
Copy after login
Copy after login

8. Separate Assignments

While it lacks the elegance of other solutions, this approach remains straightforward:

<code class="python">df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3</code>
Copy after login
Copy after login

The above is the detailed content of How to Add Multiple Columns to a Pandas DataFrame Simultaneously?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template