How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?

Linda Hamilton
Release: 2024-10-25 12:36:02
Original
280 people have browsed it

How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?

Adding Multiple Columns to a Pandas DataFrame Simultaneously

In Pandas data manipulation, efficiently adding multiple new columns to a DataFrame can be a task that requires an elegant solution. While the intuitive approach of using the column-list syntax with an equal sign may seem straightforward, it can lead to unexpected results.

The Challenge

As illustrated in the provided example, the following syntax fails to create the new columns as intended:

<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]</code>
Copy after login

This is because Pandas requires the right-hand side of the assignment to be a DataFrame when using the column-list syntax. Scalar values or lists are not compatible with this approach.

Solutions

Several alternative methods offer viable solutions for adding multiple columns simultaneously:

Method 1: Individual Assignments Using Iterator Unpacking

<code class="python">df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3</code>
Copy after login

Method 2: Expand Single Row to Match Index

<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>
Copy after login

Method 3: Combine with Temporary DataFrame Using pd.concat

<code class="python">df = pd.concat(
    [
        df,
        pd.DataFrame(
            [[np.nan, 'dogs', 3]], 
            index=df.index, 
            columns=['column_new_1', 'column_new_2', 'column_new_3']
        )
    ], axis=1
)</code>
Copy after login

Method 4: Combine with Temporary DataFrame Using .join

<code class="python">df = df.join(pd.DataFrame(
    [[np.nan, 'dogs', 3]], 
    index=df.index, 
    columns=['column_new_1', 'column_new_2', 'column_new_3']
))</code>
Copy after login

Method 5: Use Dictionary for Temporary DataFrame

<code class="python">df = df.join(pd.DataFrame(
    {
        'column_new_1': np.nan,
        'column_new_2': 'dogs',
        'column_new_3': 3
    }, index=df.index
))</code>
Copy after login

Method 6: Use .assign() with Multiple Column Arguments

<code class="python">df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)</code>
Copy after login

Method 7: Create Columns, Then Assign Values

<code class="python">new_cols = ['column_new_1', 'column_new_2', 'column_new_3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols)    # add empty cols
df[new_cols] = new_vals        # multi-column assignment works for existing cols</code>
Copy after login

Method 8: Multiple Sequential Assignments

<code class="python">df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3</code>
Copy after login

Choosing the most appropriate method will depend on factors such as the DataFrame's size, the number of new columns to be added, and the performance requirements of the task. Nonetheless, these techniques empower Pandas users with diverse options for efficiently adding multiple columns to their DataFrames.

The above is the detailed content of How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template