Table of Contents
Adding Multiple Columns to a Pandas DataFrame Simultaneously
The Challenge
Solutions
Home Backend Development Python Tutorial How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?

How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?

Oct 25, 2024 pm 12:36 PM

How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?

Adding Multiple Columns to a Pandas DataFrame Simultaneously

In Pandas data manipulation, efficiently adding multiple new columns to a DataFrame can be a task that requires an elegant solution. While the intuitive approach of using the column-list syntax with an equal sign may seem straightforward, it can lead to unexpected results.

The Challenge

As illustrated in the provided example, the following syntax fails to create the new columns as intended:

<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = [np.nan, 'dogs', 3]</code>
Copy after login

This is because Pandas requires the right-hand side of the assignment to be a DataFrame when using the column-list syntax. Scalar values or lists are not compatible with this approach.

Solutions

Several alternative methods offer viable solutions for adding multiple columns simultaneously:

Method 1: Individual Assignments Using Iterator Unpacking

<code class="python">df['column_new_1'], df['column_new_2'], df['column_new_3'] = np.nan, 'dogs', 3</code>
Copy after login

Method 2: Expand Single Row to Match Index

<code class="python">df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)</code>
Copy after login

Method 3: Combine with Temporary DataFrame Using pd.concat

<code class="python">df = pd.concat(
    [
        df,
        pd.DataFrame(
            [[np.nan, 'dogs', 3]], 
            index=df.index, 
            columns=['column_new_1', 'column_new_2', 'column_new_3']
        )
    ], axis=1
)</code>
Copy after login

Method 4: Combine with Temporary DataFrame Using .join

<code class="python">df = df.join(pd.DataFrame(
    [[np.nan, 'dogs', 3]], 
    index=df.index, 
    columns=['column_new_1', 'column_new_2', 'column_new_3']
))</code>
Copy after login

Method 5: Use Dictionary for Temporary DataFrame

<code class="python">df = df.join(pd.DataFrame(
    {
        'column_new_1': np.nan,
        'column_new_2': 'dogs',
        'column_new_3': 3
    }, index=df.index
))</code>
Copy after login

Method 6: Use .assign() with Multiple Column Arguments

<code class="python">df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)</code>
Copy after login

Method 7: Create Columns, Then Assign Values

<code class="python">new_cols = ['column_new_1', 'column_new_2', 'column_new_3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols)    # add empty cols
df[new_cols] = new_vals        # multi-column assignment works for existing cols</code>
Copy after login

Method 8: Multiple Sequential Assignments

<code class="python">df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3</code>
Copy after login

Choosing the most appropriate method will depend on factors such as the DataFrame's size, the number of new columns to be added, and the performance requirements of the task. Nonetheless, these techniques empower Pandas users with diverse options for efficiently adding multiple columns to their DataFrames.

The above is the detailed content of How to Efficiently Add Multiple Columns to a Pandas DataFrame Simultaneously?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Article Tags

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to Use Python to Find the Zipf Distribution of a Text File How to Use Python to Find the Zipf Distribution of a Text File Mar 05, 2025 am 09:58 AM

How to Use Python to Find the Zipf Distribution of a Text File

Image Filtering in Python Image Filtering in Python Mar 03, 2025 am 09:44 AM

Image Filtering in Python

How to Download Files in Python How to Download Files in Python Mar 01, 2025 am 10:03 AM

How to Download Files in Python

How Do I Use Beautiful Soup to Parse HTML? How Do I Use Beautiful Soup to Parse HTML? Mar 10, 2025 pm 06:54 PM

How Do I Use Beautiful Soup to Parse HTML?

How to Work With PDF Documents Using Python How to Work With PDF Documents Using Python Mar 02, 2025 am 09:54 AM

How to Work With PDF Documents Using Python

How to Cache Using Redis in Django Applications How to Cache Using Redis in Django Applications Mar 02, 2025 am 10:10 AM

How to Cache Using Redis in Django Applications

Introducing the Natural Language Toolkit (NLTK) Introducing the Natural Language Toolkit (NLTK) Mar 01, 2025 am 10:05 AM

Introducing the Natural Language Toolkit (NLTK)

How to Perform Deep Learning with TensorFlow or PyTorch? How to Perform Deep Learning with TensorFlow or PyTorch? Mar 10, 2025 pm 06:52 PM

How to Perform Deep Learning with TensorFlow or PyTorch?

See all articles