How Do I Get a List of All the Duplicate Items Using Pandas in Python?
Problem:
Your Pandas DataFrame contains duplicate rows, but using the duplicated() method only returns the first duplicate instance. You desire a comprehensive list of all occurrences of duplicated rows for manual comparison.
Solution 1: Isolate Rows with Duplicate IDs
<code class="python">df[ids.isin(ids[ids.duplicated()])].sort_values("ID")</code>
While this method effectively retrieves all duplicate rows, it creates duplicate ID rows in the output.
Solution 2: Group by ID and Filter for Duplicates
<code class="python">pd.concat(g for _, g in df.groupby("ID") if len(g) > 1)</code>
This approach yields a streamlined output without redundant ID rows.
The above is the detailed content of How to Identify All Duplicate Rows in a Pandas DataFrame?. For more information, please follow other related articles on the PHP Chinese website!