Home Backend Development Python Tutorial Create executable installers for windows with python scripts.

Create executable installers for windows with python scripts.

Oct 27, 2024 am 12:44 AM

Another technical entry.

Quick context, I have a back and a front (either beta) in python (flask). I raise the location in the browser.

The back lifts on the flask run port --port=5001
The front raises on the port flask run --port=5000

The app runs in the browser.

http://localhost:5000/

Basic, nothing new so far.

I have to install this app on another machine. Thought 1 install python and all the libraries and dependencies and... no.

Here comes Copilot to the rescue again. I will prompt you with tips to install these python scripts as executables for windows.

I recommend some interesting things.

First of all, have the virtual environment up, the dependencies installed, make sure everything works correctly locally and...

First use pyinstaller to generate .exe files of my apps.

pip install pyinstaller

In each directory I run:

/my-project/backend
/my-project/frontend

pyinstaller --onefile --name backend app.py

Here I had to specify passing the templates as parameters, because it gave a jynga2 error

pyinstaller --onefile --name frontend --add-data
"templates;templates" app.py

Example:
Crear instaladores ejecutables para windows con scripts en python.

Next step, install Inno Setup to generate installers.

web - Inno Setup

Well I had to promise something too to have a base, because I had no idea how to write the script or the syntax of Inno setup.

[Setup]
AppName=My Awesome APP 
AppVersion=1.0
DefaultDirName={pf}\MyAwesomeAPP 
DefaultGroupName=My Awesome APP
OutputBaseFilename=MyAwesomeAPP
Compression=lzma
SolidCompression=yes

[Files]
; Incluir todos los archivos del proyecto
Source: "C:\Users\url-a-tu-proyecto\*"; DestDir: "{app}"; Flags: recursesubdirs createallsubdirs
; Incluir los ejecutables generados por pyinstaller
Source: "C:\Users\url-a-tu-proyecto\frontend\dist\frontend.exe"; DestDir: "{app}"; Flags: ignoreversion
Source: "C:\Users\url-a-tu-proyecto\backend\dist\backend.exe"; DestDir: "{app}"; Flags: ignoreversion

[Icons]
Name: "{group}\My Awesome APP"; Filename: "{app}\frontend.exe"
Name: "{group}\My Awesome APP"; Filename: "{app}\backend.exe"

[Run]
; Ejecutar el backend
Filename: "{app}\backend.exe"; Flags: nowait
; Ejecutar el frontend
Filename: "{app}\frontend.exe"; Flags: nowait
Copy after login

This was my base structure.

Compile, wait a few minutes... and the output will be generated.

Crear instaladores ejecutables para windows con scripts en python.

And here is the first installer :D

At first it clearly didn't work... but 16 tests later, the app stayed running. The scripts running...

Crear instaladores ejecutables para windows con scripts en python.

And from my browser I could access my app.

Crear instaladores ejecutables para windows con scripts en python.

The interesting thing about this question, the tools! Obviously. What I like, I found it quick and easy to use inno setup, I learned to deal with some pyinstaller configuration issues, such as the flags for the templates... the error is very strange :P

And the use of new technologies and python is always pleasant...

Next maybe some desktop app with these scripts, to optimize a little the final size, the file architecture and clearly that the terminals are not running live and direct, with messages from development environments and having to enter to a localhost from the browser! :panic

The above is the detailed content of Create executable installers for windows with python scripts.. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1243
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

See all articles