Concatenating DataFrames Horizontally in Pandas
To concatenate two DataFrames horizontally, without considering keys and potential differences in the number of columns, use the concat function with the axis=1 parameter. This parameter specifies that the concatenation should be performed column-wise.
Example:
Consider the following two DataFrames, df_a and df_b, with equal numbers of rows but different numbers of columns:
<code class="python">import pandas as pd dict_data = {'Treatment': ['C', 'C', 'C'], 'Biorep': ['A', 'A', 'A'], 'Techrep': [1, 1, 1], 'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'mz': [500.0, 500.5, 501.0]} df_a = pd.DataFrame(dict_data) dict_data = {'Treatment1': ['C', 'C', 'C'], 'Biorep1': ['A', 'A', 'A'], 'Techrep1': [1, 1, 1], 'AAseq1': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'inte1': [1100.0, 1050.0, 1010.0]} df_b = pd.DataFrame(dict_data)</code>
To concatenate these DataFrames horizontally, use the following code:
<code class="python">pd.concat([df_a, df_b], axis=1)</code>
This will create a new DataFrame with the same number of rows as the original DataFrames and a number of columns equal to the sum of the columns in both DataFrames. The resulting DataFrame will be as follows:
AAseq Biorep Techrep Treatment mz AAseq1 Biorep1 Techrep1 Treatment1 inte1 0 ELVISLIVES A 1 C 500.0 ELVISLIVES A 1 C 1100 1 ELVISLIVES A 1 C 500.5 ELVISLIVES A 1 C 1050 2 ELVISLIVES A 1 C 501.0 ELVISLIVES A 1 C 1010
Alternative Methods:
Depending on the specific requirements, there are alternative methods to concatenate DataFrames horizontally.
The above is the detailed content of How can I horizontally concatenate Pandas DataFrames without considering keys or column differences?. For more information, please follow other related articles on the PHP Chinese website!