


How to Calculate Rolling Window Standard Deviations on 1D Arrays Using Numpy?
Using Numpy for Rolling Window Standard Deviations on 1D Arrays
In numpy, an operation often arises where one needs to calculate a rolling window function over a 1D array. A straightforward approach would be to use a loop, as shown in the given Python code snippet. However, a more efficient method is available through Numpy's强大功能.
The key to performing a rolling window operation in Numpy lies in utilizing the rolling_window function introduced in a blog post. This function reshapes the input array into a series of overlapping windows, effectively creating a 2D array. Applying a function to this 2D array allows for window-based calculations.
To calculate rolling standard deviations, simply apply the numpy.std function to the output of the rolling_window function. The following modified code snippet demonstrates this approach:
import numpy as np # Define the rolling window function def rolling_window(a, window): shape = a.shape[:-1] + (a.shape[-1] - window + 1, window) strides = a.strides + (a.strides[-1],) return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides) # Input array observations = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # Calculate rolling standard deviations stdev = np.std(rolling_window(observations, 3), 1) # Print the results print(stdev)
This code snippet efficiently calculates the rolling standard deviations for the given 1D array using pure Numpy operations, eliminating the need for loops.
The above is the detailed content of How to Calculate Rolling Window Standard Deviations on 1D Arrays Using Numpy?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

The article discusses the role of virtual environments in Python, focusing on managing project dependencies and avoiding conflicts. It details their creation, activation, and benefits in improving project management and reducing dependency issues.
