I tried out Granite .
Granite 3.0
Granite 3.0 is an open-source, lightweight family of generative language models designed for a range of enterprise-level tasks. It natively supports multi-language functionality, coding, reasoning, and tool usage, making it suitable for enterprise environments.
I tested running this model to see what tasks it can handle.
Environment Setup
I set up the Granite 3.0 environment in Google Colab and installed the necessary libraries using the following commands:
!pip install torch torchvision torchaudio !pip install accelerate !pip install -U transformers
Execution
I tested the performance of both the 2B and 8B models of Granite 3.0.
2B Model
I ran the 2B model. Here’s the code sample for the 2B model:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "auto" model_path = "ibm-granite/granite-3.0-2b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) model.eval() chat = [ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." }, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_tokens = tokenizer(chat, return_tensors="pt").to("cuda") output = model.generate(**input_tokens, max_new_tokens=100) output = tokenizer.batch_decode(output) print(output[0])
Output
<|start_of_role|>user<|end_of_role|>Please list one IBM Research laboratory located in the United States. You should only output its name and location.<|end_of_text|> <|start_of_role|>assistant<|end_of_role|>1. IBM Research - Austin, Texas<|end_of_text|>
8B Model
The 8B model can be used by replacing 2b with 8b. Here’s a code sample without role and user input fields for the 8B model:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "auto" model_path = "ibm-granite/granite-3.0-8b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) model.eval() chat = [ { "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." }, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_tokens = tokenizer(chat, add_special_tokens=False, return_tensors="pt").to("cuda") output = model.generate(**input_tokens, max_new_tokens=100) generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True) print(generated_text)
Output
1. IBM Almaden Research Center - San Jose, California
Function Calling
I explored the Function Calling feature, testing it with a dummy function. Here, get_current_weather is defined to return mock weather data.
Dummy Function
import json def get_current_weather(location: str) -> dict: """ Retrieves current weather information for the specified location (default: San Francisco). Args: location (str): Name of the city to retrieve weather data for. Returns: dict: Dictionary containing weather information (temperature, description, humidity). """ print(f"Getting current weather for {location}") try: weather_description = "sample" temperature = "20.0" humidity = "80.0" return { "description": weather_description, "temperature": temperature, "humidity": humidity } except Exception as e: print(f"Error fetching weather data: {e}") return {"weather": "NA"}
Prompt Creation
I created a prompt to call the function:
functions = [ { "name": "get_current_weather", "description": "Get the current weather", "parameters": { "type": "object", "properties": { "location": { "type": "string", "description": "The city and country code, e.g. San Francisco, US", } }, "required": ["location"], }, }, ] query = "What's the weather like in Boston?" payload = { "functions_str": [json.dumps(x) for x in functions] } chat = [ {"role":"system","content": f"You are a helpful assistant with access to the following function calls. Your task is to produce a sequence of function calls necessary to generate response to the user utterance. Use the following function calls as required.{payload}"}, {"role": "user", "content": query } ]
Response Generation
Using the following code, I generated a response:
instruction_1 = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_tokens = tokenizer(instruction_1, return_tensors="pt").to("cuda") output = model.generate(**input_tokens, max_new_tokens=1024) generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True) print(generated_text)
Output
{'name': 'get_current_weather', 'arguments': {'location': 'Boston'}}
This confirmed the model’s ability to generate the correct function call based on the specified city.
Format Specification for Enhanced Interaction Flow
Granite 3.0 allows format specification to facilitate responses in structured formats. This section explains using [UTTERANCE] for responses and [THINK] for inner thoughts.
On the other hand, since function calling is output as plain text, it may be necessary to implement a separate mechanism to distinguish between function calls and regular text responses.
Specifying Output Format
Here’s a sample prompt for guiding the AI’s output:
prompt = """You are a conversational AI assistant that deepens interactions by alternating between responses and inner thoughts. <Constraints> * Record spoken responses after the [UTTERANCE] tag and inner thoughts after the [THINK] tag. * Use [UTTERANCE] as a start marker to begin outputting an utterance. * After [THINK], describe your internal reasoning or strategy for the next response. This may include insights on the user's reaction, adjustments to improve interaction, or further goals to deepen the conversation. * Important: **Use [UTTERANCE] and [THINK] as a start signal without needing a closing tag.** </Constraints> Follow these instructions, alternating between [UTTERANCE] and [THINK] formats for responses. <output example> example1: [UTTERANCE]Hello! How can I assist you today?[THINK]I’ll start with a neutral tone to understand their needs. Preparing to offer specific suggestions based on their response.[UTTERANCE]Thank you! In that case, I have a few methods I can suggest![THINK]Since I now know what they’re looking for, I'll move on to specific suggestions, maintaining a friendly and approachable tone. ... </output example> Please respond to the following user_input. <user_input> Hello! What can you do? </user_input> """
Execution Code Example
the code to generate a response:
chat = [ { "role": "user", "content": prompt }, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_tokens = tokenizer(chat, return_tensors="pt").to("cuda") output = model.generate(**input_tokens, max_new_tokens=1024) generated_text = tokenizer.decode(output[0][input_tokens["input_ids"].shape[1]:], skip_special_tokens=True) print(generated_text)
Example Output
The output is as follows:
[UTTERANCE]Hello! I'm here to provide information, answer questions, and assist with various tasks. I can help with a wide range of topics, from general knowledge to specific queries. How can I assist you today? [THINK]I've introduced my capabilities and offered assistance, setting the stage for the user to share their needs or ask questions.
The [UTTERANCE] and [THINK] tags were successfully used, allowing effective response formatting.
Depending on prompt, closing tags (such as [/UTTERANCE] or [/THINK]) may sometimes appear in the output, but overall, the output format can generally be specified successfully.
Streaming Code Example
Let’s also look at how to output streaming responses.
The following code uses the asyncio and threading libraries to asynchronously stream responses from Granite 3.0.
!pip install torch torchvision torchaudio !pip install accelerate !pip install -U transformers
Example Output
Running the above code will generate asynchronous responses in the following format:
import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "auto" model_path = "ibm-granite/granite-3.0-2b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) model.eval() chat = [ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." }, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_tokens = tokenizer(chat, return_tensors="pt").to("cuda") output = model.generate(**input_tokens, max_new_tokens=100) output = tokenizer.batch_decode(output) print(output[0])
This example demonstrates successful streaming. Each token is generated asynchronously and displayed sequentially, allowing users to view the generation process in real time.
Summary
Granite 3.0 provides reasonably strong responses even with the 8B model. The Function Calling and Format Specification features also work quite well, indicating its potential for a wide range of applications.
The above is the detailed content of I tried out Granite .. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.
